Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Poult Sci ; 102(10): 102935, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562133

ABSTRACT

The reproductive performance of breeder roosters has significant economic importance in the poultry industry. Breeder roosters have severely reduced semen quality with age and will be at risk of culling in the following years. In order to extend the use of breeder roosters, we drew on the induced molting model of hens and selected 35 Houdan roosters aged 50 wk for induced molting. By comparing the body weight, testicular weight, semen quality, and reproductive performance before and after induced molting, we found that induced molting could restore the body weight and testicular weight to the levels before molting (P > 0.05). At the same time, it significantly improved sperm motility (P < 0.05) and also improved reproductive performance such as fertilization rate and hatching rate. To further reveal the mechanism underlying the effects of induced molting on semen quality and reproductive performance in aged Houdan roosters, we collected testes from 3 periods: 1 d before fasting (F0), 15 d after fasting (F15), and 32 d after recovery feeding (R32) for transcriptome sequencing analysis. A total of 5,671 genes were detected in F0, F15, and R32, and trend analysis of the 5,671 differential genes showed 2 significant trends (profile 5 and profile 2). KEGG enrichment analysis of the genes in the 2 profiles, revealed significantly enriched pathway regulation of actin cytoskeleton. In the regulation of actin cytoskeleton pathway, we found a protein kinase gene (SRC) and a senescence gene (ROCK2). SRC was highly expressed at F15, leading to the phosphorylation of key substrates, which in turn disrupted the Sertoli cell spermatid connection and the spermiogenesis process, resulting in no mature spermatozoa produced from F15, SRC expression was inhibited at R32, the expression level was reduced, and mature spermatozoa reappeared. The senescence gene ROCK2 was highly expressed at F15 compared to F0 and R32, which may have been responsible for inducing senescence atrophy in the testes.


Subject(s)
Chickens , Semen Analysis , Animals , Male , Female , Semen Analysis/veterinary , Chickens/genetics , Dietary Supplements/analysis , Molting , Transcriptome , Sperm Motility , Spermatozoa/physiology , Body Weight , Semen/physiology
2.
Front Genet ; 10: 457, 2019.
Article in English | MEDLINE | ID: mdl-31156710

ABSTRACT

The Xichuan black-bone chicken, which is a rare local chicken species in China, is an important genetic resource of black-bone chickens. Tyrosine can affect melanin production, but the molecular mechanism underlying tyrosine-induced melanin deposition in Xichuan black-bone chickens is poorly understood. Here, the blackness degree and melanin content of the breast muscle of Xichuan black-bone chickens fed a basic diet with five levels of added tyrosine (i.e., 0.2, 0.4, 0.6, 0.8, and 1.0%; these groups were denoted test groups I-V, respectively) were assessed, and the results showed that 0.8% tyrosine was the optimal level of added tyrosine. Moreover, the effects of tyrosine supplementation on the proliferation and tyrosinase content of melanocytes in Xichuan black-bone chickens were evaluated. The results revealed a dose-dependent relationship between tyrosine supplementation and melanocyte proliferation. In addition, 417 differentially expressed genes (DEGs), including 160 upregulated genes and 257 downregulated genes, were identified in a comparative analysis of the transcriptome profiles constructed using the pooled total RNA from breast muscle tissues of the control group and test group IV, respectively (fold change ≥2.0, P < 0.05). These DEGs were mainly involved in melanogenesis, the calcium signaling pathway, the Wnt signaling pathway, the mTOR signaling pathway, and vascular smooth muscle contraction. The pathway analysis of the DEGs identified some key genes associated with pigmentation, such as DCT and EDNRB2. In summary, the melanin content of breast muscle could be markedly enhanced by adding an appropriate amount of tyrosine to the diet of Xichuan black-bone chickens, and the EDNRB2-mediated molecular regulatory network could play a key role in the biological process of tyrosine-induced melanin deposition. These results have deepened the understanding of the molecular regulatory mechanism of melanin deposition in black-bone chickens and provide a basis for the regulation of nutrition and genetic breeding associated with melanin deposition in Xichuan black-bone chickens.

3.
Gene ; 699: 1-7, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30853631

ABSTRACT

Gonadotropin-releasing hormone (GnRH) plays an important role in regulating the activities of other components downstream of the hypothalamic-pituitary-gonadal (HPG) axis and maintaining the normal reproductive cycle of animals. However, the molecular mechanisms by which GnRH synthesis and secretion are regulated in sheep remains unclear. In this study, a series of eight recombinant vectors with deletion fragments were constructed and cotransfected with pGL3-Basic and pRL-SV40 into sheep hypothalamic neuronal cells. After treatment with 1 nM kisspeptin, the core promoter of the sheep GnRH gene was identified to be in the region of -1912 bp to -1461 bp by dual-luciferase reporter assay. Bioinformatics analysis showed that there was a binding site for the transcription factor Otx-2 in the core promoter region (-1786 to -1770 bp) that was highly conserved among different species. The expression patterns of Kiss-1, Otx-2 and GnRH in the sheep hypothalamus were the same, and the expression of Kiss-1, Otx-2 and GnRH was significantly higher in the breeding season than in nonbreeding season (P < 0.01). In addition, when hypothalamic neurons were cultured in vitro with kisspeptin, kisspeptin induced the expression of GnRH and Otx-2. In conclusion, these results provide evidence that the core promoter region (-1786 to -1770 bp) of the GnRH gene is involved in the regulation of hypothalamic activity by kisspeptin and that binding of the transcription factor Otx-2 mediates this activation.


Subject(s)
Gene Expression/genetics , Gonadotropin-Releasing Hormone/genetics , Kisspeptins/genetics , Promoter Regions, Genetic/genetics , Sheep/genetics , Animals , Binding Sites/genetics , Breeding/methods , Hypothalamus/physiology , Neurons/physiology , Otx Transcription Factors/genetics , Reproduction/genetics
4.
BMC Genomics ; 19(1): 249, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29642854

ABSTRACT

BACKGROUND: The intracerebroventricular injection of visfatin increases feed intake. However, little is known about the molecular mechanism in chicks. This study was conducted to assess the effect of visfatin on the feeding behavior of chicks and the associated molecular mechanism. RESULTS: In response to the intraventricular injection of 40 ng and 400 ng visfatin, feed intake in chicks was significantly increased, and the concentrations of glucose, insulin, TG, HDL and LDL were significantly altered. Using RNA-seq, we identified DEGs in the chick hypothalamus at 60 min after injection with various doses of visfatin. In total, 325, 85 and 519 DEGs were identified in the treated chick hypothalamus in the LT vs C, HT vs C and LT vs HT comparisons, respectively. The changes in the expression profiles of DEGs, GO functional categories, KEGG pathways, and PPI networks by visfatin-mediated regulation of feed intake were analyzed. The DEGs were grouped into 8 clusters based on their expression patterns via K-mean clustering; there were 14 appetite-related DEGs enriched in the hormone activity GO term. The neuroactive ligand-receptor interaction pathway was the key pathway affected by visfatin. The PPI analysis of DEGs showed that POMC was a hub gene that interacted with the maximum number of nodes and ingestion-related pathways, including POMC, CRH, AgRP, NPY, TRH, VIP, NPYL, CGA and TSHB. CONCLUSION: These common DEGs were enriched in the hormone activity GO term and the neuroactive ligand-receptor interaction pathway. Therefore, visfatin causes hyperphagia via the POMC/CRH and NPY/AgRP signaling pathways. These results provide valuable information about the molecular mechanisms of the regulation of food intake by visfatin.


Subject(s)
Chickens/genetics , Feeding Behavior/drug effects , Hypothalamus/metabolism , Nicotinamide Phosphoribosyltransferase/pharmacology , Transcriptome , Animals , Chickens/blood , Chickens/metabolism , Cluster Analysis , Eating/drug effects , Gene Expression Profiling , Gene Ontology , Hormones/blood , Hypothalamus/drug effects , Injections, Intraventricular , Nicotinamide Phosphoribosyltransferase/administration & dosage , Protein Interaction Mapping , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Signal Transduction
5.
Gen Comp Endocrinol ; 225: 1-12, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26342967

ABSTRACT

Leptin is an important endocrine regulation factor of food intake and energy homeostasis in mammals; however, the existence of a poultry leptin gene (LEP) is still debated. Here, for the first time, we report the cloning of a partial exon 3 sequence of LEP (qLEP) and four different leptin receptor splicing variants, including a long receptor (qLEPRl) and three soluble receptors (qLEPR-a, qLEPR-b and qLEPR-c) in Japanese quail (Coturnix japonica). The qLEP gene had high GC content (64%), which is similar to other reported avian leptin genes. The encoded qLEP protein possessed the conserved pair of cysteine residues that are required to form a lasso knot for full biological activity, but shared relatively low identities with LEPs of other vertebrates. The translated qLEPRl protein contained 1143 amino acids and shared high amino acid sequence identity with a chicken homolog (89% identity). qLEPRl also contained all the motifs, domains, and basic tyrosine residues that are conserved in the LEPRl proteins of other vertebrates. qRT-PCR analysis showed that LEP and the four LEPR variants were expressed extensively in all tissues examined; the expression levels of LEP were relatively high in hypothalamus, skeletal muscle, and pancreas, while the expression levels of the LEPRs were highest in the pituitary. Compared with the expression levels of juvenile qLEP and total qLEPR (including all LEPR variants), the expression levels of mature qLEP and total qLEPR were up-regulated in the hypothalamus and pituitary, and down-regulated in the ovary. The expressions of LEP/LEPR increased when fasting and decreased when refeeding in the brain and peripheral tissues of juvenile quail, which suggested that the LEP/LEPR system modulated food intake and energy expenditure, although, unlike in mammals, LEP may actually act to inhibit food intake during fasting, at least in juvenile quail. The results indicate that qLEP and qLEPR have unique expression patterns and that the encoded proteins play important roles in the regulation of reproduction and energy status in Japanese quail.


Subject(s)
Hypothalamus/metabolism , Leptin/metabolism , Ovary/metabolism , Pituitary Gland/metabolism , Receptors, Leptin/metabolism , Age Factors , Amino Acid Sequence , Animals , Carrier Proteins/metabolism , Cloning, Molecular , Coturnix/metabolism , Eating/genetics , Exons , Female , Leptin/genetics , Receptors, Leptin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL