Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Type of study
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Mar Environ Res ; 195: 106378, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266549

ABSTRACT

The increasing prevalence of phosphorus limitation in coastal waters has drawn attention to the bioavailability of cellular surface-adsorbed phosphorus (SP) as a reservoir of phosphorus in phytoplankton. This study examined the storage, utilization, and regulation of SP in the coastal waters of the East China Sea, as well as three cultivated algal bloom species (Skeletonema marinoi, Prorocentrum shikokuense, and Karenia mikimotoi) prevalent in the area. SP accounted for 14.3%-45.5% of particulate phosphorus in the field and laboratory species. After the depletion of external phosphate, the studied species can rapidly transport SP within 3-24 h. The storage of SP is regulated by both external phosphate conditions and the internal growth stage of cells, but it is not influenced by the various cellular surface structures of the studied species. This study highlights the significance of SP as a crucial phosphorus reservoir and the potential use of the SP level as an indicator of phosphorus deficiency in phytoplankton.


Subject(s)
Dinoflagellida , Microalgae , Phosphates , Phytoplankton/physiology , Phosphorus , China , Harmful Algal Bloom
2.
Chemosphere ; 349: 140844, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042419

ABSTRACT

Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.


Subject(s)
Dinoflagellida , Phosphorus , Phosphorus/metabolism , Membrane Lipids/metabolism , Dinoflagellida/metabolism , Harmful Algal Bloom , Phospholipids/metabolism , Autophagy
3.
Hum Vaccin Immunother ; 14(8): 1987-1994, 2018.
Article in English | MEDLINE | ID: mdl-29601259

ABSTRACT

Sabin-based inactivated poliovirus vaccine(sIPV) is gradually replacing live-attenuated oral polio vaccine(OPV). Sabin-inactivated poliovirus vaccine(sIPV) has played a vital role in reducing economic burden of poliomyelitis and maintaining appropriate antibody levels in the population. However, due to its high cost and limited manufacturing capacity, sIPV cannot reach its full potential for global poliovirus eradication in developing countries. Therefore, to address this situation, we designed this study to evaluate the dose-sparing effects of AS03, CpG oligodeoxynucleotides (CpG-ODN) and polyinosinic:polycytidylic acid (PolyI:C) admixed with sIPV in rats. Our results showed that a combination of 1/4-dose sIPV adjuvanted with AS03 or AS03 with BW006 provides a seroconversion rate similar to that of full-dose sIPV without adjuvant and that, this rate is 5-fold higher than that of 1/4-dose sIPV without adjuvant after the first immunization. The combination of AS03 or AS03 with BW006 as an adjuvant effectively reduced sIPV dose by at least 4-fold and induced both humoral and cellular immune responses. Therefore, our study revealed that the combination of AS03 or AS03 with BW006 is a promising adjuvant for sIPV development.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Immunogenicity, Vaccine , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Oral/administration & dosage , Animals , Cost Savings , Drug Costs , Drug Evaluation, Preclinical , Drug Therapy, Combination/methods , Female , Immunity, Cellular/immunology , Male , Models, Animal , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Poliovirus Vaccine, Inactivated/economics , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Oral/economics , Poliovirus Vaccine, Oral/immunology , Poly I-C/administration & dosage , Poly I-C/immunology , Rats , Rats, Wistar , Seroconversion , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL