Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Adv ; 9(36): eadi3441, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37672582

ABSTRACT

Fluorescence-guided intervention can bolster standard therapies by detecting and treating microscopic tumors before lethal recurrence. Tremendous progress in photoimmunotherapy and nanotechnology has been made to treat metastasis. However, many are lost in translation due to heterogeneous treatment effects. Here, we integrate three technological advances in targeted photo-activable multi-agent liposome (TPMAL), fluorescence-guided intervention, and laser endoscopy (ML7710) to improve photoimmunotherapy. TPMAL consists of a nanoliposome chemotherapy labeled with fluorophores for tracking and photosensitizer immunoconjugates for photoimmunotherapy. ML7710 is connected to Modulight Cloud to capture and analyze multispectral emission from TPMAL for fluorescence-guided drug delivery (FGDD) and fluorescence-guided light dosimetry (FGLD) in peritoneal carcinomatosis mouse models. FGDD revealed that TPMAL enhances drug delivery to metastases by 14-fold. ML7710 captured interpatient variability in TPMAL uptake and prompted FGLD in >50% of animals. By combining TPMAL, ML7710, and fluorescence-guided intervention, variation in treatment response was substantially reduced and tumor control improved without side effects.


Subject(s)
Peritoneal Neoplasms , Animals , Mice , Peritoneal Neoplasms/therapy , Immunotherapy , Phototherapy , Nanotechnology , Drug Delivery Systems , Liposomes
2.
J Nanobiotechnology ; 18(1): 1, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31898555

ABSTRACT

BACKGROUND: Photoimmunotherapy involves targeted delivery of photosensitizers via an antibody conjugate (i.e., photoimmunoconjugate, PIC) followed by light activation for selective tumor killing. The trade-off between PIC selectivity and PIC uptake is a major drawback limiting the efficacy of photoimmunotherapy. Despite ample evidence showing that photoimmunotherapy is most effective when combined with chemotherapy, the design of nanocarriers to co-deliver PICs and chemotherapy drugs remains an unmet need. To overcome these challenges, we developed a novel photoimmunoconjugate-nanoliposome (PIC-Nal) comprising of three clinically used agents: anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody cetuximab (Cet), benzoporphyrin derivative (BPD) photosensitizer, and irinotecan (IRI) chemotherapy. RESULTS: The BPD photosensitizers were first tethered to Cet at a molar ratio of 6:1 using carbodiimide chemistry to form PICs. Conjugation of PICs onto nanoliposome irinotecan (Nal-IRI) was facilitated by copper-free click chemistry, which resulted in monodispersed PIC-Nal-IRI with an average size of 158.8 ± 15.6 nm. PIC-Nal-IRI is highly selective against EGFR-overexpressing epithelial ovarian cancer cells with 2- to 6-fold less accumulation in low EGFR expressing cells. Successful coupling of PIC onto Nal-IRI enhanced PIC uptake and photoimmunotherapy efficacy by up to 30% in OVCAR-5 cells. Furthermore, PIC-Nal-IRI synergistically reduced cancer viability via a unique three-way mechanism (i.e., EGFR downregulation, mitochondrial depolarization, and DNA damage). CONCLUSION: It is increasingly evident that the most effective therapies for cancer will involve combination treatments that target multiple non-overlapping pathways while minimizing side effects. Nanotechnology combined with photochemistry provides a unique opportunity to simultaneously deliver and activate multiple drugs that target all major regions of a cancer cell-plasma membrane, cytoplasm, and nucleus. PIC-Nal-IRI offers a promising strategy to overcome the selectivity-uptake trade-off, improve photoimmunotherapy efficacy, and enable multi-tier cancer targeting. Controllable drug compartmentalization, easy surface modification, and high clinical relevance collectively make PIC-Nal-IRI extremely valuable and merits further investigations in living animals.


Subject(s)
Immunoconjugates/therapeutic use , Irinotecan/therapeutic use , Nanoparticles/chemistry , Neoplasms/therapy , Phototherapy , Cell Line, Tumor , Combined Modality Therapy , Drug Liberation , Drug Stability , Humans , Immunoconjugates/chemistry , Irinotecan/chemistry , Liposomes
SELECTION OF CITATIONS
SEARCH DETAIL