Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Hazard Mater ; 443(Pt B): 130302, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36347142

ABSTRACT

Heterogeneous catalytic ozonation (HCO) was a promising water purification technology. Designing novel metal-based catalysts and exploring their structural-activity relationship continued to be a hot topic in HCO. Herein, we reviewed the recent development of metal-based catalysts (including monometallic and polymetallic catalysts) in HCO. Regulation of metal based active sites (surface hydroxyl groups, Lewis acid sites, metal redox cycle and surface defect) and their key roles in activating O3 were explored. Advantage and disadvantage of conventional characterization techniques on monitoring metal active sites were claimed. In situ electrochemical characterization and DFT simulation were recommended as supplement to reveal the metal active species. Though the ambiguous interfacial behaviors of O3 at these active sites, the existence of interfacial electron migration was beyond doubt. The reported metal-based catalysts mainly served as electron donator for O3, which resulted in the accumulation of oxidized metal and reduced their activity. Design of polymetallic catalysts could accelerate the interfacial electron migration, but they still faced with the dilemma of sluggish Me(n+m)+/Men+ redox cycle. Alternative strategies like coupling active metal species with mesoporous silicon materials, regulating surface hydrophobic/hydrophilic properties, polaring surface electron distribution, coupling HCO process with photocatalysis and H2O2 were proposed for future research.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Ozone/chemistry , Hydrogen Peroxide , Water Pollutants, Chemical/chemistry , Catalytic Domain , Water Purification/methods , Catalysis , Metals
2.
Clin Anat ; 35(3): 383-391, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35102603

ABSTRACT

The aim of this study was to investigate the trajectory of the stria terminalis and develop a protocol for mapping the stria terminalis using multi-shell diffusion images based tractography. The stria terminalis was reconstructed by combining one region of interest at the amygdala with another region of interest at the bed nucleus of stria terminalis. In addition, one region of avoidance was placed on the fornix at the interventricular foramen and another was set at the anterior perforated substance. The fiber-tracking protocol was tested in a Human Connectome Project-842 template, 35 healthy subjects from Massachusetts General Hospital, and 20 healthy subjects from the Human Connectome Project using generalized q-sampling imaging based tractography. The stria terminalis was reconstructed in the Human Connectome Project-842 template, 35 Massachusetts General Hospital healthy subjects, and 20 Human Connectome Project healthy subjects with our protocol. The stria terminalis originated from the amygdala and traveled parallel to the fornix. Then, the stria terminalis followed a C-shaped trajectory around the inferior, posterior, and dorsal surfaces of the thalamus before projecting to the bed nucleus of stria terminalis between the thalamus and caudate nucleus. There were no significant differences in the quantitative anisotropy and fractional anisotropy values between the left and right stria terminalis. The stria terminalis was accurately visualized across subjects using multi-shell diffusion images through generalized q-sampling imaging based tractography. This method could be an important tool for the reconstruction and evaluation of the stria terminalis in various neurological disorders. One Sentence Summary The visualization of the stria terminalis through the multi-shell diffusion images using generalized q-sampling imaging based tractography.


Subject(s)
Amygdala , Thalamus , Humans
3.
Clin Anat ; 35(3): 269-279, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34535922

ABSTRACT

The aim of this study was to make a thorough investigation of the trajectory of the ansa lenticularis (AL) and its subcomponents using high-resolution fiber-tracking tractography. The subcomponents of the AL were reconstructed from one region of interest (ROI) in the area of the globus pallidus combined with another ROI in the red nucleus, substantia nigra, subthalamic nucleus, or thalamus. This fiber-tracking protocol was tested in an HCP-1065 template, 35 healthy subjects from Massachusetts General Hospital (MGH), and 20 healthy subjects from the human connectome project (HCP) using generalized q-sampling imaging (GQI)-based tractography. Quantitative anisotropy and fractional anisotropy were also computed for the AL subcomponents. The subcomponents of the AL could be reconstructed in the HCP-1065 template, 35 MGH healthy subjects, and 20 HCP healthy subjects. The AL descends from the globus pallidus and joins the ansa peduncularis for a short distance, subdividing later into fibers that continue separately to the red nucleus, substantia nigra, subthalamic nucleus, and thalamus. The study demonstrated the trajectory of the ansa lenticularis and its subcomponents using GQI-based tractography, improving our understanding of the anatomical connectivity between the globus pallidus and the thalamo-subthalamic region in the human brain. One Sentence Summary The investigation of the ansa lenticularis and its subcomponents using high-resolution diffusion images based tractography.


Subject(s)
Diffusion Tensor Imaging , White Matter , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Humans , Red Nucleus/diagnostic imaging , Thalamus
4.
Article in English | MEDLINE | ID: mdl-22319547

ABSTRACT

Electroacupuncture (EA), especially high-frequency EA, has frequently been used as an alternative therapy for Parkinson disease (PD) and is reportedly effective for alleviating motor symptoms in patients and PD models. However, the molecular mechanism underlying its effectiveness is not completely understood. To implement a full-scale search for the targets of 100 Hz EA, we selected rat models treated with 6-hydroxydopamine into the unilateral MFB, which mimic end-stage PD. High-throughput microarray analysis was then used to uncover the regulated targets in the cortex and striatum after 4-week EA treatment. In the differentially regulated transcripts, the proportion of recovered expression profiles in the genes, the functional categories of targets in different profiles, and the affected pathways were analyzed. Our results suggested that the recovery of homeostasis in the transcript network and many regulated functional clusters in the cortex and striatum after EA treatment may contribute to the behavioral improvement of PD rats.

SELECTION OF CITATIONS
SEARCH DETAIL