Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Fitoterapia ; 175: 105956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604261

ABSTRACT

ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism, and abnormally high expression of ACLY occurs in many diseases, including cancers, dyslipidemia and cardiovascular diseases. ACLY inhibitors are prospective treatments for these diseases. However, the scaffolds of ACLY inhibitors are insufficient with weak activity. The discovery of inhibitors with structural novelty and high activity continues to be a research hotpot. Acanthopanax senticosus (Rupr. & Maxim.) Harms is used for cardiovascular disease treatment, from which no ACLY inhibitors have ever been found. In this work, we discovered three novel ACLY inhibitors, and the most potent one was isochlorogenic acid C (ICC) with an IC50 value of 0.14 ± 0.04 µM. We found dicaffeoylquinic acids with ortho-dihydroxyphenyl groups were important features for inhibition by studying ten phenolic acids. We further investigated interactions between the highly active compound ICC and ACLY. Thermal shift assay revealed that ICC could directly bind to ACLY and improve its stability in the heating process. Enzymatic kinetic studies indicated ICC was a noncompetitive inhibitor of ACLY. Our work discovered novel ACLY inhibitors, provided valuable structure-activity patterns and deepened knowledge on the interactions between this targe tand its inhibitors.


Subject(s)
ATP Citrate (pro-S)-Lyase , Eleutherococcus , Eleutherococcus/chemistry , Molecular Structure , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Quinic Acid/isolation & purification , Quinic Acid/chemistry , Hydroxybenzoates/pharmacology , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/chemistry , Structure-Activity Relationship
2.
J Ethnopharmacol ; 328: 118068, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38513777

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Prostatitis and benign prostatic hyperplasia (BPH) are inflammations of the prostate gland, which surrounds the urethra in males. Jinqiancao granules are a traditional Chinese medicine used to treat kidney stones and this medicine consists of four herbs: Desmodium styracifolium (Osbeck) Merr., Pyrrosia calvata (Baker) Ching, Plantago asiatica L. and stigma of Zea mays L. AIM OF THE STUDY: We hypothesized that Jinqiancao granules could be a potential therapy for prostatitis and BPH, and this work aimed to elucidate active compounds in Jinqiancao granules and their target mechanisms for the potential treatment of the two diseases. MATERIALS AND METHODS: Jinqiancao granules were commercially available and purchased. Database-driven data mining and networking were utilized to establish a general correlation between Jinqiancao granules and the two diseases above. Ultra-performance liquid chromatography-mass spectrometry was used for compound separation and characterization. The characterized compounds were evaluated on four G-protein coupled receptors (GPCRs: GPR35, muscarinic acetylcholine receptor M3, alpha-1A adrenergic receptor α1A and cannabinoid receptor CB2). A dynamic mass redistribution technique was applied to evaluate compounds on four GPCRs. Nitric acid (NO) inhibition was tested on the macrophage cell line RAW264.7. Molecular docking was conducted on GPR35-active compounds and GPR35 crystal structure. Statistical analysis using GEO datasets was conducted. RESULTS: Seventy compounds were isolated and twelve showed GPCR activity. Three compounds showed potent GPR35 agonistic activity (EC50 < 10 µM) and the GPR35 agonism action of PAL-21 (Scutellarein) was reported for the first time. Docking results revealed that the GPR35-targeting compounds interacted at the key residues for the agonist-initiated activation of GPR35. Five compounds showed weak antagonistic activity on M3, which was confirmed to be a disease target by statistical analysis. Seventeen compounds showed NO inhibitory activity. Several compounds showed multi-target properties. An experiment-based network reflected a pharmacological relationship between Jinqiancao granules and the two diseases. CONCLUSIONS: This study identified active compounds in Jinqiancao granules that have synergistic mechanisms, contributing to anti-inflammatory effects. The findings provide scientific evidence for the potential use of Jinqiancao granules as a treatment for prostatitis and BPH.


Subject(s)
Prostatic Hyperplasia , Prostatitis , Male , Humans , Prostatitis/drug therapy , Prostatitis/metabolism , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/metabolism , Molecular Docking Simulation , Prostate , Receptors, G-Protein-Coupled/metabolism
3.
J Ethnopharmacol ; 328: 118116, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38548118

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY: To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS: The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS: AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-ß-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 µM, 9.05 µM, 3.87 µM, and 7.00 µM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION: Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.


Subject(s)
Aristolochic Acids , Mitochondrial Diseases , Humans , Aristolochic Acids/toxicity , Glucuronides/metabolism , Microsomes, Liver/metabolism , Reactive Oxygen Species/metabolism , Glucuronosyltransferase/metabolism , Kinetics , Catalysis , Uridine Diphosphate/metabolism
4.
J Pharm Biomed Anal ; 241: 115969, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38306866

ABSTRACT

Dactylicapnos scandens (D. scandens) is an ethnic medicine commonly used for the treatment of analgesia. In this study, an integrated strategy was proposed for the quality evaluation of D. scandens based on "phytochemistry-network pharmacology-effectiveness-specificity" to discover and determine the quality marker (Q-marker) related to analgesia. First, phytochemical analysis was conducted using UPLC-Q-TOF-MS/MS and a self-built compound library, and 19 components were identified in D. scandens extracts. Next, the "compounds-targets" network was constructed to predict the relevant targets and compounds related to analgesia. Then, the analgesic activity of related compounds was verified through dynamic mass redistribution (DMR) assays on D2 and Mu receptors, and 5 components showed D2 antagonistic activity with IC50 values of 39.2 ± 14.7 µM, 5.46 ± 0.37 µM, 17.5 ± 1.61 µM, 7.89 ± 0.79 µM and 3.29 ± 0.73 µM, respectively. Subsequently, nine ingredients were selected as Q-markers in consideration of specificity, effectiveness and measurability, and their content was measured in 12 batches of D. scandens. Furthermore, the hierarchical cluster analysis and heatmap results indicated that the selected Q-marker could be used to discriminate D. scandens and that the content of Q-marker varied greatly in different batches. Our study shows that this strategy provides a useful method to discover the potential Q-markers of traditional Chinese medicine and offers a practical workflow for exploring the quality consistency of medicinal materials.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Network Pharmacology , Medicine, Chinese Traditional , Drugs, Chinese Herbal/chemistry , Phytochemicals/pharmacology
6.
Fitoterapia ; 171: 105712, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37884227

ABSTRACT

Insomnia is a common and refractory disease. Since more than 2000 years ago, people have been using Ziziphi Spinosae Semen (ZSS). However, there are lack of molecular mechanisms of sleep promotion effects of ZSS. The purpose of this study is to clarify the active ingredients in ZSS that are used to treat insomnia. Using a method called cellular label-free integrative pharmacology (CLIP), we established five insomnia-related target models, including serotonin (5HT2A and 5HT1A), melatonin (MT1), dopamine (D2) and epinephrine (ß2) receptors. The one-dimensional (1D) fractions of ZSS extract were prepared on a RZC18 column and assayed on five models. Subsequently, the active fraction was further analyzed, fractionated and quantified using a two-dimensional (2D) liquid phase method coupled with a charged aerosol detector (CAD), This CAD-coupled 2D-LC method requires micro-fractions from the 1D separation and thus it greatly saves sample amounts and corresponding preparation time, and quickly conduct activity screening. The composition of the active 2D fractions was then determined using three-dimensional (3D) HPLC-MS, and molecular docking was separately carried out for the described compounds on the targets for activity prediction. Seven compounds were predicted to be active on 5HT2A, and two compounds on D2. We experimentally verified the prediction and found that vitexin exhibited D2 agonistic activity, and nuciferine exhibited 5HT2A antagonistic activity. This study revealed the effective components and their targets of ZSS in the treatment of insomnia, also highlighted the potential of the CLIP technique and bioactivity guided multi-dimensional HPLC-MS in molecular mechanism elucidation for traditional Chinese medicines.


Subject(s)
Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/drug therapy , Molecular Docking Simulation , Molecular Structure , Seeds , Medicine, Chinese Traditional
7.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1005-1013, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872271

ABSTRACT

The ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to conduct the qualitative analysis of the monoterpene chemical components from Paeoniae Radix Rubra. Gradient elution was performed on C_(18) HD(2.1 mm×100 mm, 2.5 µm) column with a mobile phase of 0.1% formic acid(A) and acetonitrile(B). The flow rate was 0.4 mL·min~(-1) and the column temperature was 30 ℃. MS analysis was conducted in both positive and negative ionization modes using electrospray ionization(ESI) source. Qualitative Analysis 10.0 was used for data processing. The identification of chemical components was realized by the combination of standard compounds, fragmentation patterns, and mass spectra data reported in the literature. Forty-one monoterpenoids in Paeoniae Radix Rubra extract were identified. Among them, 8 compounds were reported in Paeoniae Radix Rubra for the first time and 1 was presumed to be the new compound 5″-O-methyl-galloylpaeoniflorin or its positional isomer. The method in this study realizes the rapid identification of monoterpenoids from Paeoniae Radix Rubra and provides a material and scientific basis for quality control and further study on the pharmaceutical effect of Paeoniae Radix Rubra.


Subject(s)
Drugs, Chinese Herbal , Chromatography, Liquid , Mass Spectrometry , Monoterpenes
8.
Anal Methods ; 15(15): 1888-1895, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36988039

ABSTRACT

Abundant chemical components are key to ensure the evaluation accuracy of fingerprint analysis of traditional Chinese medicines (TCMs). A two-step extraction method combining supercritical fluid extraction (SFE) and water ultrasonic extraction was established for the quality evaluation of Perilla frutescens (L.) Britt. Weakly polar components were extracted under optimal SFE conditions (15% co-solvent (EtOH : n-hexane = 1 : 14, (v/v)), 40 °C, 250 bar, and 30 min), and polar components were subsequently extracted by an ultrasonic step (100% water as solvent, 40 °C, and 45 min). Then, HPLC methods were established, which were validated to be accurate, stable, and reliable. In this work, 25 batches of samples were evaluated and the data were analysed by similarity analysis (SA) and hierarchical cluster analysis (HCA). The similarity values of SFE extracts and aqueous extracts were respectively 0.616-0.999, and 0.252-0.997, proving the importance of the extraction method for the accuracy of the subsequent fingerprint analysis results. For the HCA, 25 samples were divided into two categories (leaves and stems), among which four batches of leaves with less similarity were considered as stems, indicating that quality differences of P. frutescens depending on medicinal parts and origin exist. The two-step extraction method developed in this work has been proved to be suitable for the quality evaluation of TCMs with complex compositions.


Subject(s)
Perilla frutescens , Perilla frutescens/chemistry , Chromatography, High Pressure Liquid/methods , Plant Extracts/analysis , Plant Extracts/chemistry , Solvents/chemistry , Water
9.
Se Pu ; 41(2): 142-151, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36725710

ABSTRACT

Qinggusan is the 69th prescription in the first batch of "Catalogue of Ancient Chinese Classic Formulas". In modern clinical practice, Qinggusan is mainly used to treat noninfectious fever. However, because few studies on Qinggusan reference samples and their quality value transfer are available, the development and promotion of its compound preparations are restricted. Therefore, establishing an accurate and comprehensive quality control method to clarify the critical quality attributes of Qinggusan reference samples is of great importance. In this study, 15 batches of Qinggusan reference samples were processed to determine the range of their dry extract ratios. Quantitative high-performance liquid chromatography (HPLC) fingerprint analysis was performed using a Waters Symmetry Shield RP18 column (250 mm×4.6 mm, 5 µm) with acetonitrile-0.1% (v/v) formic acid aqueous solution as the mobile phase in gradient elution mode. The flow rate was 1.0 mL/min, the column temperature was 30 ℃, and the detection wavelength was 254 nm. The HPLC fingerprints of the Qinggusan reference samples were established under these conditions to evaluate their similarity. The established method was systematically validated and found to demonstrate good precision, repeatability, and sample stability. Subsequently, characteristic peaks were identified and attributed by HPLC-quadrupole-time-of-flight-mass spectrometry (HPLC-Q-TOF-MS) analysis. MS was performed in electrospray ionization mode, the data were collected in both positive- and negative-ion modes, and the detection range was m/z 50-2000. The contents and transfer rate ranges of the index components, namely, gentiopicrin, mangiferin, picroside Ⅱ, picroside Ⅰ, and glycyrrhizic acid, were determined to analyze the quality value transfer of the samples. The results demonstrated that the dry extract rate of the 15 batches of Qinggusan reference samples ranged from 24.10% to 26.88% and that their fingerprint similarities were generally greater than 0.95. Twelve common peaks were identified by reference identification, literature comparison, and high-resolution MS analysis. Twelve compounds, including six iridoid glycosides, two flavonoids, one alkaloid, one triterpenoid saponin, and two others. Among them, L-picein, androsin, picroside Ⅳ, picroside Ⅱ and picroside Ⅰ were from Picrorhizae Rhizoma, loganin acid, swertiamarin and gentiopicrin were from Gentianae Macrophyllae Radix, neomangiferin and mangiferin were from Anemarrhenae Rhizoma, dichotomine B was from Stellariae Radix, and glycyrrhizic acid was from Glycyrrhizae Radix et Rhizoma. The five key components presented good linear relationships in their respective linear ranges, and all correlation coefficients were higher than 0.999. The relative standard deviations (RSDs) of precision, stability, and repeatability were less than 1.3%. The average recoveries varied between 95.92% and 102.5%, with RSDs less than 3.9%; these values meet the requirements defined in the 2020 edition of the Chinese Pharmacopoeia. The contents of gentiopicrin, mangiferin, picroside Ⅱ, picroside Ⅰ, and glycyrrhizic acid in the 15 batches of reference samples were in the range of 17.92-27.55, 1.83-4.42, 23.08-36.44, 8.43-15.04, and 0.94-2.39 mg/g, respectively, and their transfer rates from the decoction pieces to the reference samples were 47.91%-63.95%, 22.96%-59.39%, 60.82%-77.82%, 64.25%-99.53%, and 15.30%-39.30%, respectively. In this study, the chemical components of Qinggusan reference samples were comprehensively identified and their quality value transfer was studied through the combination of HPLC fingerprinting and MS. Clarification of the critical quality attributes of Qinggusan reference samples could provide a basis for the quality control of Qinggusan compound preparations.


Subject(s)
Drugs, Chinese Herbal , Glycyrrhizic Acid , Glycyrrhizic Acid/analysis , Drugs, Chinese Herbal/analysis , Plant Extracts , Quality Control , Chromatography, High Pressure Liquid
10.
Article in English | MEDLINE | ID: mdl-36809736

ABSTRACT

Alkaloids are natural bioactive ingredients but are usually present in low amounts in plant extracts. In addition, the dark color of plant extracts increases the difficulty in separation and identification of alkaloids. Therefore, effective decoloration and alkaloid enrichment methods are necessary for purification and further pharmacological studies of alkaloids. In this study, a simple and efficient strategy is developed for the decoloration and alkaloid enrichment of Dactylicapnos scandens (D. scandens) extracts. In feasibility experiments, we evaluated two anion-exchange resins and two cation-exchange silica-based materials with different functional groups using a standard mixture composed of alkaloids and nonalkaloids. By virtue of its high adsorbability of nonalkaloids, the strong anion-exchange resin PA408 is considered a better choice for the removal of nonalkaloids, and the strong cation-exchange silica-based material HSCX was selected for its great adsorption capacity for alkaloids. Furthermore, the optimized elution system was applied for the decoloration and alkaloid enrichment of D. scandens extracts. Nonalkaloid impurities in the extracts were removed by the use of PA408 in tandem with HSCX treatment, and the total alkaloid recovery, decoloration and impurity removal ratios are determined to be 98.74%, 81.45% and 87.33%, respectively. This strategy can contribute to further alkaloid purification and pharmacological profiling of D. scandens extracts, as well as other plants with medicinal value.


Subject(s)
Alkaloids , Anion Exchange Resins , Plant Extracts , Adsorption , Anions
11.
Fitoterapia ; 165: 105397, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36539068

ABSTRACT

Three new isoquinoline alkaloids including a morphine derivative (1), two aporphine alkaloids (2-3), together with five known alkaloids (4-8) were obtained from the extract of Dactylicapnos scandens (D.Don) Hutch. (D. scandens). Their structures and absolute configurations were elucidated by extensive spectroscopic data analysis including HRESIMS, NMR and electronic circular dichroism (ECD) and ECD calculation. Compounds 1-8 were evaluated for ATP Citrate Lyase (ACLY) inhibitory activity through an enzymatic assay. Among them, 2 and 3 showed the high ACLY inhibitory activity with an IC50 value of 10.48 ± 1.59 and 10.89 ± 4.89 µM.


Subject(s)
ATP Citrate (pro-S)-Lyase , Alkaloids , Alkaloids/pharmacology , Alkaloids/chemistry , Circular Dichroism , Isoquinolines/pharmacology , Isoquinolines/chemistry , Molecular Structure , Papaveraceae/chemistry
12.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36431815

ABSTRACT

Curcuma kwangsiensis, one species of Curcumae zedoaria Ros. c, is a commonly used traditional Chinese medicine (TCM) for treating cardiovascular disease, cancer, asthma and inflammation. Polar compounds are abundant in water decoction, which would be responsible for critical pharmacological effects. However, current research on polar compounds in Curcumae zedoaria Ros. c remains scarce. In this study, the polar fraction from Curcuma kwangsiensis was firstly profiled on G protein-coupled receptor 109A (GPR109A), ß2-adrenergic receptor (ß2-AR), neurotensin receptor (NTSR), muscarinic-3 acetylcholine receptor (M3) and G protein-coupled receptor 35 (GPR35), which were involved in its clinical indications and exhibited excellent ß2-AR and GPR109A receptor activities. Then, an offline two-dimensional reversed-phase liquid chromatography (RPLC) coupled with the hydrophilic interaction chromatography (HILIC) method was developed to separate polar compounds. By the combination of a polar-copolymerized XAqua C18 column and an amide-bonded XAmide column, an orthogonality of 47.6% was achieved. As a result of coupling with the mass spectrometry (MS), a four-dimensional data plot was presented in which 373 mass peaks were detected and 22 polar compounds tentatively identified, including the GPR109A agonist niacin. Finally, molecular docking of these 22 identified compounds to ß2-AR, M3, GPR35 and GPR109A receptors was performed to predict potential active ingredients, and compound 9 was predicted to have a similar interaction to the ß2-AR partial agonist salmeterol. These results were supplementary to the material basis of Curcuma kwangsiensis and facilitated the bioactivity research of polar compounds. The integration of RPLC×HILIC-MS and molecular docking can be a powerful tool for characterizing and predicting polar active components in TCM.


Subject(s)
Curcuma , Molecular Docking Simulation , Reactive Oxygen Species , Chromatography, Liquid/methods , Mass Spectrometry
13.
Analyst ; 148(1): 61-73, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36441185

ABSTRACT

Tripterygium wilfordii Hook F from the family Celastraceae is a traditional Chinese medicine (TCM) whose principal chemical constituents are terpenoids, including sesquiterpene alkaloids and diterpenoids, which have unique and diverse structures and remarkable biological activities. In order to advance pharmacological research and guide the preparation of monomer compounds derived from T. wilfordii, a systematic approach to efficiently discover new compounds or their derivatives is needed. Herein, compound separation and identification were performed by offline reversed-phase × supercritical fluid chromatography coupled mass spectrometry (RP × SFC-Q-TOF-MS/MS) and Global Natural Product Social (GNPS) molecular networking. The 2D chromatography system exhibited a high degree of orthogonality and significant peak capacity, and SFC has an advantage during the separation of sesquiterpene alkaloid isomers. Feature-based molecular networking offers the great advantage of quickly detecting and clustering unknown compounds, which greatly assists in intuitively judging the type of compound, and this networking technique has the potential to dramatically accelerate the identification and characterization of compounds from natural sources. A total of 324 compounds were identified and quantitated, including 284 alkaloids, 22 diterpenoids and 18 triterpenoids, which means that there are numerous potential new compounds with novel structures to be further explored. Overall, feature-based molecular networking provides an effective method for discovering and characterizing novel compounds and guides the separation and preparation of targeted natural products.


Subject(s)
Alkaloids , Diterpenes , Drugs, Chinese Herbal , Sesquiterpenes , Tandem Mass Spectrometry , Tripterygium/chemistry , Alkaloids/analysis , Alkaloids/chemistry , Alkaloids/pharmacology , Chromatography, High Pressure Liquid/methods , Sesquiterpenes/analysis , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Diterpenes/analysis , Plant Extracts/chemistry
14.
J Chromatogr A ; 1679: 463379, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35933773

ABSTRACT

Belamcandae Rhizoma is a widely used traditional Chinese herbal medicine with isoflavones as the main active ingredient. In this paper, an integrated strategy was developed to discover and identify new isoflavones in Belamcandae Rhizoma by an ultra-high-performance liquid chromatography coupled with high resolution multistage mass spectrometry. Different characterization methods were used based on structural features of isoflavone aglycones and glycosides. On one hand, we adopted a data-dependent acquisition mode incorporated into intelligent AcquireX deep scan algorithms to analyze crude extract, and used a mass defect filtering technique to filter out two kinds of isoflavone aglycones from the extract. On the other hand, neutral-loss-triggered MSn was used to analyze isoflavone glycosides, and under this acquisition mode, MSn scan only took place when chemical components exhibited specific neutral losses. Identification of isoflavones was achieved either by comparison with reference compounds or analysis of characteristic product ions based on MS2 or MSn fragmentation patterns. UV absorbance spectra also contributed to the confirmation of isoflavones. As a result, a total of 65 isoflavone aglycones (42 new aglycones) and 142 isoflavone glycosides (122 new glycosides) were discovered, including a number of trace components. Meanwhile, modifications of new sugar moieties, such as xylose, rhamnose and 6-O-(4­hydroxy-3,5-dimethoxybenzoyl)-ß-D-glucose, were discovered in Belamcandae Rhizoma for the first time. These results indicated the feasibility of this established strategy for in-depth identification of new isoflavone aglycones and glycosides.


Subject(s)
Isoflavones , Chromatography, High Pressure Liquid , Glycosides , Mass Spectrometry , Rhizome
15.
Food Chem ; 397: 133777, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35914457

ABSTRACT

As a valuable medicinal and edible plant, Crocus sativus L. has had wide applications since ancient times. Herein, a comprehensive approach for characterization of constituents in saffron was established based on the combination of targeted and non-targeted strategies. A targeted UPLC-ESI/MSn strategy was applied for in-depth identification of crocins, and a non-targeted UPLC-ESI/MS2 approach characterized other components. This integration strategy was used to analyze ingredients in 21 batches of saffrons from 6 origins. Forty-seven crocins belonging to 8 types were identified including 32 new crocins. Among them, 6 new compounds with specific structures were reported for the first time, i.e. trans-6(G, 2G), trans-4(GT, g), trans-3(GT), cis-3(GT), methyl ester-trans-2(G) and methyl ester-cis-2(G). Besides, 91 non-crocin components were identified including 43 new compounds. Based on systematic investigation of crocins and non-crocins, we found that crocins were the critical components to distinguish saffrons from different origins, especially between domestic and foreign samples.


Subject(s)
Crocus , Crocus/chemistry , Esters/chemistry , Plant Extracts/chemistry
16.
Molecules ; 27(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35897910

ABSTRACT

The breadth and depth of traditional Chinese medicine (TCM) applications have been expanding in recent years, yet the problem of quality control has arisen in the application process. It is essential to design an algorithm to provide blending ratios that ensure a high overall product similarity to the target with controlled deviations in individual ingredient content. We developed a new blending algorithm and scheme by comparing different samples of ginkgo leaves. High-consistency samples were used to establish the blending target, and qualified samples were used for blending. Principal component analysis (PCA) was used as the sample screening method. A nonlinear programming algorithm was applied to calculate the blending ratio under different blending constraints. In one set of calculation experiments, the result was blended by the same samples under different conditions. Its relative deviation coefficients (RDCs) were controlled within ±10%. In another set of calculations, the RDCs of more component blending by different samples were controlled within ±20%. Finally, the near-critical calculation ratio was used for the actual experiments. The experimental results met the initial setting requirements. The results show that our algorithm can flexibly control the content of TCMs. The quality control of the production process of TCMs was achieved by improving the content stability of raw materials using blending. The algorithm provides a groundbreaking idea for quality control of TCMs.


Subject(s)
Drugs, Chinese Herbal , Ginkgo biloba , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/analysis , Medicine, Chinese Traditional , Plant Leaves/chemistry , Quality Control
17.
Molecules ; 27(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35807471

ABSTRACT

Ginseng, which contains abundant ginsenosides, grows mainly in the Jilin, Liaoning, and Heilongjiang in China. It has been reported that the quality and traits of ginsengs from different origins were greatly different. To date, the accurate prediction of the origins of ginseng samples is still a challenge. Here, we integrated ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) with a support vector machine (SVM) for rapid discrimination and prediction of ginseng from the three main regions where it is cultivated in China. Firstly, we develop a stable and reliable UHPLC-Q-TOF-MS method to obtain robust information for 31 batches of ginseng samples after reasonable optimization. Subsequently, a rapid pre-processing method was established for the rapid screening and identification of 69 characteristic ginsenosides in 31 batches ginseng samples from three different origins. The SVM model successfully distinguished ginseng origin, and the accuracy of SVM model was improved from 83% to 100% by optimizing the normalization method. Six crucial quality markers for different origins of ginseng were screened using a permutation importance algorithm in the SVM model. In addition, in order to validate the method, eight batches of test samples were used to predict the regions of cultivation of ginseng using the SVM model based on the six selected quality markers. As a result, the proposed strategy was suitable for the discrimination and prediction of the origin of ginseng samples.


Subject(s)
Ginsenosides , Panax , Biomarkers , Chromatography, High Pressure Liquid/methods , Ginsenosides/chemistry , Mass Spectrometry/methods , Panax/chemistry , Support Vector Machine
18.
Fitoterapia ; 159: 105175, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35296435

ABSTRACT

Four new isoquinoline alkaloids including a benzophenanthridine alkaloid (1), a morphine derivative (2), a narceine-type alkaloid (3) and a simple isoquinoline alkaloid (4), a new amide alkaloid (5) and a new phthalic acid derivative (6), together with eleven known alkaloids (7-17) were obtained from the whole herbs extract of Corydalis bungeana Turcz. Their structures and absolute configurations were elucidated by extensive spectroscopic data analysis including HRESIMS, NMR and electronic circular dichroism (ECD) and ECD calculation. Compounds 1-17 were evaluated for dopamine D2 receptor activity in CHO-D2 cells. Among them, 16 showed the highest antagonistic activity on the D2 receptor with an IC50 value of 2.04 ± 0.01 µM. Compounds 14 and 15 exhibited moderate antagonism with IC50 values of 13.66 ± 2.28 and 31.72 ± 2.52 µM, respectively.


Subject(s)
Alkaloids , Corydalis , Alkaloids/chemistry , Alkaloids/pharmacology , Amides , Corydalis/chemistry , Dopamine D2 Receptor Antagonists , Isoquinolines/chemistry , Isoquinolines/pharmacology , Molecular Structure , Receptors, Dopamine D2
19.
J Sep Sci ; 45(5): 1051-1058, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34984820

ABSTRACT

Ephedrae Herba is one of the most commonly used herbal medicines, and it has been shown that most of the clinical efficacy for cold and asthma is exerted by its alkaloidal components. A simple and sensitive high-performance liquid chromatography method was developed using a perfluorooctyl column for the simultaneous determination of five alkaloids (norephedrine, norpseudoephedrine, ephedrine, pseudoephedrine, and methylephedrine) in Ephedrae Herba. The mobile phase comprising acetonitrile and 15 mM ammonium trifluoroacetate was used to elute the targets in isocratic elution mode. The method was validated for linearity (R2  > 0.999), repeatability, intraday and interday precision, recoveries with trueness (93.87-110.99%), limits of detection (5.35-5.76 µg/mL), and limits of quantification (20 µg/mL). The quantitative results revealed that the developed method was precise and accurate. Then it was successfully applied to determine the difference in the contents of three batches of Ephedrae Herba from three pharmaceutical companies.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/analysis , Ephedrine/analysis , Pseudoephedrine/analysis
20.
J Sep Sci ; 45(6): 1162-1169, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35000274

ABSTRACT

Qingfei Paidu Decoction is a Chinese medicine formula that has been proved effective in the treatment of coronavirus disease 2019. However, the comprehensive separation and characterization of Qingfei Paidu Decoction are of a great challenge due to the diversity of chemical components in a wide range of polarity. In this study, a triplex off-line two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry is developed for the analysis of Qingfei Paidu Decoction. One reversed-phase liquid chromatography×hydrophilic interaction liquid chromatography system and two reversed-phase liquid chromatography×reversed phase liquid chromatography systems were constructed to separate polar components and weak-polar components in Qingfei Paidu Decoction, respectively. Benefiting from the good orthogonality of two-dimensional liquid chromatography and high sensitivity of quadrupole time-of-flight MS, chemical components with different polarities and content were discovered. A total of 749 peaks were detected in positive and negative ionization mode and presented as a four-dimensional data plot. Meanwhile, 498 compounds belonging to 14 categories were tentatively identified. These results provide good supplementary to elucidate the material basis of Qingfei Paidu Decoction. The triplex off-line two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry strategy can be a powerful and efficient tool for the separation and characterization of chemical substances in traditional Chinese medicine formulas.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Drugs, Chinese Herbal/analysis , Humans , Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL