Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Arch Biochem Biophys ; 714: 109080, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34742934

ABSTRACT

Alisol B 23-acetate (AB23A) is a natural triterpenoid isolated from Rhizoma alisamatis that has been widely used as a traditional Chinese medicine (TCM). Previous studies have documented the beneficial effect of AB23A on non-alcoholic fatty liver disease (NAFLD), but the functional interactions between gut microbiota and the anti-NAFLD effect of AB23A remain unclear. In this study, we investigated the benefits of experimental treatment with AB23A on gut microbiota dysbiosis in NAFLD with an obesity model. C57BL/6J mice were administrated a high-fat diet (HFD) with or without AB23A for 12 weeks. AB23A significantly improved metabolic phenotype in the HFD-fed mice. Moreover, results of 16S rRNA gene-based amplicon sequencing in each group reveled that AB23A not only reduced the abundance of the Firmicutes/Bacteroidaeota ratio and Actinobacteriota/Bacteroidaeota ratio, but regulated the abundance of the top 10 genera, including norank_f__Muribaculaceae, Lactobacillus, Ileibacterium, Turicibacter, Faecalibaculum, the Lachnospiraceae_NK4A136_group, unclassified_f__Lachnospiraceae, and norank_f__Lachnospiraceae. AB23A significantly reduced the serum levels of lipopolysaccharide and branched-chain amino acids, which are positively correlated with the abundances of Ileibacterium and Turicibacter. Moreover, AB23A led to remarkable reductions in the activation of TLR4, NF-κB, and mTOR, and upregulated the expression of tight junction proteins, including ZO-1 and occludin. These results revealed that AB23A displayed a prebiotic capacity in HFD-fed NAFLD mice.


Subject(s)
Amino Acids, Branched-Chain/blood , Cholestenones/pharmacology , Diet, High-Fat , Lipopolysaccharides/blood , Non-alcoholic Fatty Liver Disease/prevention & control , Probiotics , Animals , Body Weight/drug effects , Gastrointestinal Microbiome , Male , Mice , Mice, Inbred C57BL , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Ribosomal, 16S/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/metabolism , Weight Gain/drug effects
2.
Appl Microbiol Biotechnol ; 104(4): 1737-1749, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31867696

ABSTRACT

Intestinal flora imbalance is one of the potential pathogenesis of inflammatory bowel diseases, and the study aims to discover the effect of berberine on the composition and function of gut microbiota in ulcerative colitis (UC) rats. UC rats were induced by dextran sulfate sodium (DSS) and administrated with berberine. Colonic morphological changes and claudin-1 protein of colon tissues were primarily examined to validate the protective effects brought by berberine treatment. Then the composition and function of gut microbiota were analyzed, accompanied with quantitative analysis of serum amino acids. The results showed that berberine could not only ameliorate the colonic damages in DSS-induced UC rats but also regulate the gut microbiota by increasing lactic acid-producing bacteria and carbohydrate hydrolysis bacteria as well as decreasing conditional pathogenic bacteria. Accordingly, the relevant functions of above bacteria were improved, including the metabolism and biosynthesis of amino acids, capability of DNA replication and repair, carbohydrate digestion and absorption and glycolysis/gluconeogenesis. Furthermore, the serum amino acids were regulated and showed high correlation with the gut microbiota after berberine treatment. In conclusion, the study confirms the effect of berberine on ameliorating the colonic damage and highlights some specific bacteria and relevant functions linked with berberine treatment, exploring the potential of gut microbiota as a diagnostic biomarker or a therapeutic target in UC treatment.


Subject(s)
Bacteria/drug effects , Berberine/therapeutic use , Colitis, Ulcerative/drug therapy , Gastrointestinal Microbiome/drug effects , Amino Acids/blood , Animals , Bacteria/pathogenicity , Claudin-1 , Colitis, Ulcerative/chemically induced , Colon/drug effects , Dextran Sulfate , Lactobacillales/drug effects , Male , Rats , Specific Pathogen-Free Organisms
3.
Article in English | MEDLINE | ID: mdl-31756623

ABSTRACT

Inflammatory bowel disease (IBD) is often accompanied by metabolic imbalance and Berberine can relieve the symptoms of IBD, but the mechanism is still unclear. To explore the relationship between IBD, metabolism and Berberine, dextran sulfate sodium-induced ulcerative colitis (UC) model was built and urine and feces samples were analyzed with ultra-performance liquid chromatography combined with quadrupole-time-of-flight mass spectrometry, followed by multivariate statistical analyses. Targeted metabolomics was applied to verify and supplement the result of amino acids tested by non-targeted metabolomics. The study found that Berberine could ameliorate UC and improve metabolic disorders. The level of 4 metabolites increased and 35 decreased in urine and these metabolites mainly belong to amino acid, glucide, organic acid and purine. Besides, Berberine could reduce the level of 5 metabolites and raise the level of 7 metabolites in feces, which mainly belong to amino acid and lipid. Additionally, these altered metabolites were mainly related to amino acids metabolism, purine metabolism, vitamin metabolism, lipid metabolism and citrate cycle pathways. Furthermore, microbiome metabolism may be regulated by Berberine in UC. In general, this study provides a useful approach for exploring the mechanism of Berberine in the treatment of UC from the perspective of metabolomics.


Subject(s)
Berberine/pharmacology , Chromatography, Liquid/methods , Colitis, Ulcerative/metabolism , Metabolome/drug effects , Metabolomics/methods , Amino Acids/metabolism , Animals , Colitis, Ulcerative/urine , Disease Models, Animal , Feces/chemistry , Random Allocation , Rats , Tandem Mass Spectrometry/methods
4.
Front Microbiol ; 9: 2380, 2018.
Article in English | MEDLINE | ID: mdl-30349514

ABSTRACT

Background: Huang-Lian-Jie-Du-Decoction (HLJDD), a prescription of traditional Chinese medicine, has been clinically used to treat diabetes for thousands of years and its mechanism was reported to be related to gut microbiota. However, no study has explored the effect of HLJDD on the gut microbiota in type 2 diabetes mellitus (T2DM) yet. Therefore, in this study, we investigated the modulation of gut microbiota induced by HLJDD treatment in T2DM in order to unveil the underlying mechanism. Methods: A combination of high-fat diet (HFD) and streptozotocin (STZ) was used to induce T2DM in rats. Bacterial communities in the fecal samples from the control group, the T2DM model group, and the HLJDD-treated T2DM group were analyzed by 16S gene sequencing, followed with a subset sample analyzed by shotgun sequencing. Results: The HLJDD treatment significantly ameliorated hyperglycemia and inflammation in T2DM rats. Additionally, our results indicated that HLJDD treatment could not only restore the gut dysbiosis in T2DM rats, which was proved by an increasing amount of short chain fatty acids (SCFAs)-producing and anti-inflammatory bacteria such as Parabacteroides, Blautia, and Akkermansia as well as a decreasing amount of conditioned pathogenic bacteria (e.g., Aerococcus, Staphylococcus, and Corynebacterium), but also modulate the dysregulated function of gut microbiome in T2DM rats, including an up-regulation in bile acid biosynthesis as well as a reduction in glycolysis/gluconeogenesis and nucleotide metabolism. Conclusion: HLJDD treatment could ameliorate hyperglycemia and restore the dysregulated microbiota structure and function to a normal condition mainly by increasing SCFAs-producing bacteria and reducing conditioned pathogenic bacteria in T2DM rats, which provides insights into the mechanism of HLJDD treatment for T2DM from the view of gut microbiota.

5.
Nutr Metab (Lond) ; 15: 8, 2018.
Article in English | MEDLINE | ID: mdl-29410697

ABSTRACT

BACKGROUND: Polysaccharides can alleviate obesity in mammals; however, studies on mechanism of this alleviation are limited. A few studies have indicated that polysaccharides improve obesity by regulating the metabolism of the body. Therefore, a metabolomics approach, consisting of high resolution nuclear magnetic resonance (NMR) spectroscopy and a multivariate statistical technique, was applied to explore the mechanism of the protective effects of lentinan and Flos Lonicera polysaccharides (LF) on high-fat diet (HFD) induced obesity. METHODS: In this study, rats were randomly divided into three groups: control diet (CD), HFD, and HFD supplemented with a mixture of lentinan and Flos Lonicera polysaccharide. Histopathological and clinical biochemical assessments were also conducted. A combination of a NMR metabolomics study and a multivariable statistical analysis method to distinguish urinary and fecal metabolites was applied. RESULTS: Significant obesity symptoms appeared in HFD rats (for example, significant weight gain, epididymal adipose accumulation and lipid deposition in hepatocytes), which was attenuated in the LF group. Additionally, the HFD induced a reduction of choline, citrate, pyruvate and glycerol and increased the levels of trimethylamine oxide (TMAO) and taurine. Of note, these metabolic disorders were reversed by LF intervention mainly through pathways of energy metabolism, choline metabolism and gut microbiota metabolism. CONCLUSIONS: LF supplementation had a re-balancing effect on the disturbed metabolic pathways in the obese body. The results of this study validate the therapeutic effect of the compound polysaccharide--LF in obesity and described the biochemical and metabolic mechanisms involved.

SELECTION OF CITATIONS
SEARCH DETAIL