Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Elife ; 102021 04 13.
Article in English | MEDLINE | ID: mdl-33845942

ABSTRACT

Previous studies have identified a crucial role of the gut microbiome in modifying Alzheimer's disease (AD) progression. However, the mechanisms of microbiome-brain interaction in AD were so far unknown. Here, we identify microbiota-derived short chain fatty acids (SCFA) as microbial metabolites which promote Aß deposition. Germ-free (GF) AD mice exhibit a substantially reduced Aß plaque load and markedly reduced SCFA plasma concentrations; conversely, SCFA supplementation to GF AD mice increased the Aß plaque load to levels of conventionally colonized (specific pathogen-free [SPF]) animals and SCFA supplementation to SPF mice even further exacerbated plaque load. This was accompanied by the pronounced alterations in microglial transcriptomic profile, including upregulation of ApoE. Despite increased microglial recruitment to Aß plaques upon SCFA supplementation, microglia contained less intracellular Aß. Taken together, our results demonstrate that microbiota-derived SCFA are critical mediators along the gut-brain axis which promote Aß deposition likely via modulation of the microglial phenotype.


Subject(s)
Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome , Microglia/metabolism , Plaque, Amyloid/metabolism , Alzheimer Disease/metabolism , Animals , Female , Male , Mice , Specific Pathogen-Free Organisms
2.
J Neurosci ; 40(5): 1162-1173, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31889008

ABSTRACT

Recovery after stroke is a multicellular process encompassing neurons, resident immune cells, and brain-invading cells. Stroke alters the gut microbiome, which in turn has considerable impact on stroke outcome. However, the mechanisms underlying gut-brain interaction and implications for long-term recovery are largely elusive. Here, we tested the hypothesis that short-chain fatty acids (SCFAs), key bioactive microbial metabolites, are the missing link along the gut-brain axis and might be able to modulate recovery after experimental stroke. SCFA supplementation in the drinking water of male mice significantly improved recovery of affected limb motor function. Using in vivo wide-field calcium imaging, we observed that SCFAs induced altered contralesional cortex connectivity. This was associated with SCFA-dependent changes in spine and synapse densities. RNA sequencing of the forebrain cortex indicated a potential involvement of microglial cells in contributing to the structural and functional remodeling. Further analyses confirmed a substantial impact of SCFAs on microglial activation, which depended on the recruitment of T cells to the infarcted brain. Our findings identified that microbiota-derived SCFAs modulate poststroke recovery via effects on systemic and brain resident immune cells.SIGNIFICANCE STATEMENT Previous studies have shown a bidirectional communication along the gut-brain axis after stroke. Stroke alters the gut microbiota composition, and in turn, microbiota dysbiosis has a substantial impact on stroke outcome by modulating the immune response. However, until now, the mediators derived from the gut microbiome affecting the gut-immune-brain axis and the molecular mechanisms involved in this process were unknown. Here, we demonstrate that short-chain fatty acids, fermentation products of the gut microbiome, are potent and proregenerative modulators of poststroke neuronal plasticity at various structural levels. We identified that this effect was mediated via circulating lymphocytes on microglial activation. These results identify short-chain fatty acids as a missing link along the gut-brain axis and as a potential therapeutic to improve recovery after stroke.


Subject(s)
Brain/drug effects , Brain/immunology , Fatty Acids, Volatile/administration & dosage , Stroke/immunology , Animals , Brain/metabolism , Female , Lymphocytes/drug effects , Lymphocytes/immunology , Male , Mice, Inbred C57BL , Microglia/drug effects , Microglia/immunology , Recovery of Function/drug effects , Stroke/metabolism , Transcriptome/drug effects
3.
Neuroimage ; 199: 570-584, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31181333

ABSTRACT

The organization of brain areas in functionally connected networks, their dynamic changes, and perturbations in disease states are subject of extensive investigations. Research on functional networks in humans predominantly uses functional magnetic resonance imaging (fMRI). However, adopting fMRI and other functional imaging methods to mice, the most widely used model to study brain physiology and disease, poses major technical challenges and faces important limitations. Hence, there is great demand for alternative imaging modalities for network characterization. Here, we present a refined protocol for in vivo widefield calcium imaging of both cerebral hemispheres in mice expressing a calcium sensor in excitatory neurons. We implemented a stringent protocol for minimizing anesthesia and excluding movement artifacts which both imposed problems in previous approaches. We further adopted a method for unbiased identification of functional cortical areas using independent component analysis (ICA) on resting-state imaging data. Biological relevance of identified components was confirmed using stimulus-dependent cortical activation. To explore this novel approach in a model of focal brain injury, we induced photothrombotic lesions of the motor cortex, determined changes in inter- and intrahemispheric connectivity at multiple time points up to 56 days post-stroke and correlated them with behavioral deficits. We observed a severe loss in interhemispheric connectivity after stroke, which was partially restored in the chronic phase and associated with corresponding behavioral motor deficits. Taken together, we present an improved widefield calcium imaging tool accounting for anesthesia and movement artifacts, adopting an advanced analysis pipeline based on human fMRI algorithms and with superior sensitivity to recovery mechanisms in mouse models compared to behavioral tests. This tool will enable new studies on interhemispheric connectivity in murine models with comparability to human imaging studies for a wide spectrum of neuroscience applications in health and disease.


Subject(s)
Calcium , Cerebral Cortex/physiology , Connectome/methods , Nerve Net/physiology , Neuroimaging/methods , Optical Imaging/methods , Prosencephalon/physiology , Stroke/physiopathology , Animals , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Motor Cortex/injuries , Motor Cortex/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Prosencephalon/diagnostic imaging , Prosencephalon/physiopathology , Stroke/diagnostic imaging
4.
Nat Neurosci ; 22(2): 317-327, 2019 02.
Article in English | MEDLINE | ID: mdl-30598527

ABSTRACT

Analysis of entire transparent rodent bodies after clearing could provide holistic biological information in health and disease, but reliable imaging and quantification of fluorescent protein signals deep inside the tissues has remained a challenge. Here, we developed vDISCO, a pressure-driven, nanobody-based whole-body immunolabeling technology to enhance the signal of fluorescent proteins by up to two orders of magnitude. This allowed us to image and quantify subcellular details through bones, skin and highly autofluorescent tissues of intact transparent mice. For the first time, we visualized whole-body neuronal projections in adult mice. We assessed CNS trauma effects in the whole body and found degeneration of peripheral nerve terminals in the torso. Furthermore, vDISCO revealed short vascular connections between skull marrow and brain meninges, which were filled with immune cells upon stroke. Thus, our new approach enables unbiased comprehensive studies of the interactions between the nervous system and the rest of the body.


Subject(s)
Meninges/diagnostic imaging , Neurons/metabolism , Skull/diagnostic imaging , Whole Body Imaging/methods , Animals , Meninges/metabolism , Mice , Mice, Transgenic , Skull/metabolism
5.
J Neurochem ; 139 Suppl 2: 271-279, 2016 10.
Article in English | MEDLINE | ID: mdl-26968835

ABSTRACT

For years, low reproducibility of preclinical trials and poor translation of promising preclinical therapies to the clinic have posed major challenges to translational research in most biomedical fields. To overcome the limitations that stand between experimental and clinical research, international consortia have attempted to establish standardized guidelines for study design and for reporting the resulting data. In addition, multicenter preclinical randomized controlled trials (pRCTs) have been proposed as a suitable tool for 'bridging the gap' between experimental research and clinical trials. We recently reported the design and results of the first such pRCT in which we confirmed the feasibility of using a coordinated approach with standardized protocols in collaboration with independent multinational research centers. However, despite its successes, this first pRCT also had several difficulties, particularly with respect to following the protocols established in the study design and analyzing the data. Here, we review our experiences performing the study, and we analyze and discuss the lessons learned from performing the first pRCT. Moreover, we provide suggestions regarding how obstacles can be overcome to improve the performance and outcome of future pRCT studies. Translational research is hampered by low reproducibility of preclinical studies and countless failed clinical trials. International consortia have proposed preclinical multicenter trials as an intermediate step to overcome this 'translational roadblock'. We have recently performed the first such preclinical randomized controlled trial (pRCT) by adopting key elements of clinical study design to preclinical research. In this review, we discuss the lessons learned from this trial and provide suggestions how to optimize future pRCTs. This article is part of the 60th Anniversary special issue.


Subject(s)
Disease Models, Animal , Drug Evaluation, Preclinical/trends , Randomized Controlled Trials as Topic , Translational Research, Biomedical/trends , Animals , Drug Evaluation, Preclinical/standards , Humans , Learning , Randomized Controlled Trials as Topic/methods , Randomized Controlled Trials as Topic/standards , Reproducibility of Results , Translational Research, Biomedical/methods , Translational Research, Biomedical/standards
6.
Sci Transl Med ; 7(299): 299ra121, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26246166

ABSTRACT

Numerous treatments have been reported to provide a beneficial outcome in experimental animal stroke models; however, these treatments (with the exception of tissue plasminogen activator) have failed in clinical trials. To improve the translation of treatment efficacy from bench to bedside, we have performed a preclinical randomized controlled multicenter trial (pRCT) to test a potential stroke therapy under circumstances closer to the design and rigor of a clinical randomized control trial. Anti-CD49d antibodies, which inhibit the migration of leukocytes into the brain, were previously investigated in experimental stroke models by individual laboratories. Despite the conflicting results from four positive and one inconclusive preclinical studies, a clinical trial was initiated. To confirm the preclinical results and to test the feasibility of conducting a pRCT, six independent European research centers investigated the efficacy of anti-CD49d antibodies in two distinct mouse models of stroke in a centrally coordinated, randomized, and blinded approach. The results pooled from all research centers revealed that treatment with CD49d-specific antibodies significantly reduced both leukocyte invasion and infarct volume after the permanent distal occlusion of the middle cerebral artery, which causes a small cortical infarction. In contrast, anti-CD49d treatment did not reduce lesion size or affect leukocyte invasion after transient proximal occlusion of the middle cerebral artery, which induces large lesions. These results suggest that the benefits of immune-targeted approaches may depend on infarct severity and localization. This study supports the feasibility of performing pRCTs.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Brain Ischemia/drug therapy , Disease Models, Animal , Drug Evaluation, Preclinical , Integrin alpha4/immunology , Acute Disease , Animals , Brain Ischemia/immunology , Humans , Mice , Random Allocation , Treatment Outcome
7.
Stroke ; 45(7): 2107-14, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24916913

ABSTRACT

BACKGROUND AND PURPOSE: Neuroinflammatory processes contribute to secondary neuronal damage after intracerebral hemorrhage. We aimed to characterize the time course of brain immigration of different leukocyte subsets after striatal injection of either autologous blood or collagenase in mice. METHODS: Intracerebral hemorrhage was induced by injection of either autologous blood (20 µL) or collagenase (0.03 U) in C57Bl/6J mice. Hematoma volumetry was performed on cryosections. Blood volume was measured by hemoglobin spectrophotometry. Leukocytes were isolated from hemorrhagic hemisphere 1, 3, 5, and 14 days after intracerebral hemorrhage, stained for leukocyte markers, and measured by flow cytometry. Heterologous blood injection from CD45.1 mice was used to investigate the origin of brain-invading leukocytes. RESULTS: Collagenase injection induced a larger hematoma volume but a similar blood content compared with blood injection. Cerebral leukocyte infiltration in the hemorrhagic hemisphere was similar in both models. The majority of leukocytes isolated from the brain originated from the circulation. CD4+ T lymphocytes were the predominant brain leukocyte population in both models. However, cerebral granulocyte counts were higher after collagenase compared with blood injection. CONCLUSIONS: Brain infiltration of systemic immune cells is similar in both murine intracerebral hemorrhage models. The pathophysiological impact of invading leukocytes and, in particular, of T cells requires further investigation.


Subject(s)
Blood Transfusion, Autologous/statistics & numerical data , Brain/pathology , Cerebral Hemorrhage/metabolism , Collagenases/pharmacology , Disease Models, Animal , Leukocytes/pathology , Animals , Brain/blood supply , Brain/immunology , Cell Movement/physiology , Cerebral Hemorrhage/etiology , Collagenases/administration & dosage , Hematoma/pathology , Leukocyte Common Antigens , Leukocytes/immunology , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL