Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Fitoterapia ; 175: 105969, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643860

ABSTRACT

Ischemic stroke (IS) has attracted worldwide attention due to the high mortality and disability rate. Raw rhubarb (RR) is a traditional medicinal plant and whole-food that has been used in China for its various pharmacological activities, such as antioxidant and anti-inflammatory properties. Recent pharmacological research has shown the role of RR against IS, but its mechanism of action remains unclear, particularly in the context of the brain-gut axis. To address this gap in knowledge, the present study was conducted in the middle cerebral artery occlusion/reperfusion (MCAO/R) model with the aim of investigating the effects of RR on regulating the intestinal microbiota barrier and metabolism and thereby reducing inflammatory response so as to improve the IS. The results showed that pre-treatment of RR attenuated cerebral infarct area and inflammation response in MCAO rats. Furthermore, RR also improved intestinal barrier function, including the integrity and permeability of the intestinal barrier. Additionally, RR intervention significantly attenuated gut microbiota dysbiosis caused by ischemic stroke, especially the increased Firmicutes. Notably, the pseudo-germ-free (PGF) rats further demonstrated that the anti-stroke effect of RR might rely on intestinal microbiota. In addition, the UPLC/Q-Orbitrap-MS-Based metabolomics revealed the disrupted metabolic profiles caused by MCAO/R, and a total of 11 differential metabolites were modulated by RR administration, especially bile acids. Further correlation analysis and network pharmacology analysis also demonstrated a strong association between specific bacteria, such as Firmicutes and bile acids. In conclusion, our work demonstrated that RR could effectively ameliorate ischemic stroke by modulating the microbiota and metabolic disorders.


Subject(s)
Brain-Gut Axis , Gastrointestinal Microbiome , Ischemic Stroke , Rats, Sprague-Dawley , Rheum , Animals , Rheum/chemistry , Gastrointestinal Microbiome/drug effects , Ischemic Stroke/drug therapy , Rats , Male , Brain-Gut Axis/drug effects , Metabolome , Infarction, Middle Cerebral Artery , Dysbiosis , Disease Models, Animal
2.
Mol Neurobiol ; 60(1): 413-427, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36274077

ABSTRACT

Neuronal damage after ischemic stroke (IS) is frequently due to ferroptosis, contributing significantly to ischemic injury. However, the mechanism against ferroptosis in IS remained unclear. The aim of this study was to investigate the potential mechanism of Danhong injection (DHI) and the critical transcription factor SATB1 in preventing neuronal ferroptosis after ischemic stroke in vivo and in vitro. The results showed that DHI treatment significantly reduced the infarct area and associated damage in the brains of the pMCAO mice, and enhanced the viability of OGD-injured neurons. And several characteristic indicators of ferroptosis, such as mitochondrial necrosis and iron accumulation, were regulated by DHI after IS. Importantly, we found that the expression and activity of SATB1 were decreased in the pMCAO mice, especially in neuron cells. Meanwhile, the SATB1/SLC7A11/HO-1 signaling pathway was activated after DHI treatment in ischemic stroke and was found to improve neuronal ferroptosis. Inhibition of SATB1 significantly reduced SLC7A11-HO-1 and significantly attenuated the anti-ferroptosis effects of DHI in the OGD model. These findings indicate that neuronal ferroptosis after IS can be alleviated by DHI through SATB1/SLC7A11/HO-1 pathway, and SATB1 may be an attractive therapeutic target for treating ischemic stroke.


Subject(s)
Drugs, Chinese Herbal , Ferroptosis , Ischemic Stroke , Neurons , Animals , Mice , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Transcription Factors/metabolism , Drugs, Chinese Herbal/pharmacology , Amino Acid Transport System y+/metabolism , Heme Oxygenase-1/metabolism
3.
J Ethnopharmacol ; 293: 115281, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35405257

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Acupuncture is an effective therapy for ischemic stroke, which has been widely used in China and gradually accepted in more countries and regions recently. In addition, Chinese medicine also plays an important role in stroke treatment, among which NaoMaiTong (NMT) is an example of an effective herbal formula for the treatment of stroke. A therapeutic strategy that combines acupuncture and medicine was widely used in stroke patients. However, the synergistic influences and mechanisms of combined acupuncture and medicine on ischemic stroke have not yet been entirely elucidated. AIM OF THIS STUDY: The purpose of this study is to explore whether acupuncture and medicine combination treatments can produce synergism by using NMT, a clinically effective Chinese medicinal formula for the treatment of ischemic stroke for decades and has been demonstrated to be effective against ischemic brain injury, as a probe. Meanwhile, the potential mechanisms were investigated via cecal microbiome and plasma metabolomics to provide more strategies and basis for acupuncture-medicine combination for stroke. MATERIALS AND METHODS: Adopted middle-cerebral artery occlusion/reperfusion (MCAO/R) rat models, the effect for the stroke of the combination treatment consisting of acupuncture and NMT was evaluated by detecting neurological issues, cerebral infarct dimensions, levels of inflammatory factors (IL-6, IL-1ß, TNF-α) and oxidative stress factors (SOD, MDA) and brain-derived neurotrophic factor (BDNF). Subsequently,16S rRNA gene sequencing and LC/MS-based metabolomic analysis were utilized to explore the characteristics of cecal-contents microecology and plasma metabolic profile, respectively. Finally, the correlation between intestinal microecological characteristics and plasma metabolic characteristics was analyzed to explore the potential mechanism of the acupuncture-NMT combination. RESULTS: The efficacy of acupuncture-NMT therapy was more effective than a single treatment on ischemic stroke, with more effectively reduced infarct sizes, improved neurobehavioral deficits, and alleviated oxidative stress and inflammatory responses. Besides, the combination therapy not only adjusted gut microbiota disturbances by enriching species diversity, reducing the abundance of pathogenic bacteria (such as Escherichia-Shaigella), as well as increasing the abundance of beneficial bacteria (such as Turicibacter, Bifidobacterium), but also improved metabolic disorders by reversing metabolite plasma levels to normality. The results of the correlation analysis demonstrated a significant association between intestinal microbiota and plasma metabolic profile, especially the strong correlation of Turicibacter and isoflavones phyto-estrogens metabolites. CONCLUSION: The combination of acupuncture and NMT could produce synergism, suggesting acupuncture-medicine combination therapy might be more conducive to the recovery of ischemic stroke. And the potential mechanism was probably related to the mediation of intestinal microecology and plasma metabolism. Turicibacter and isoflavones phyto-estrogens metabolites might be the targets for acupuncture-NMT combination for stroke. Our current findings could provide a potential therapeutic strategy against ischemic stroke.


Subject(s)
Acupuncture Therapy , Gastrointestinal Microbiome , Ischemic Stroke , Isoflavones , Stroke , Animals , Drugs, Chinese Herbal , Estrogens/therapeutic use , Genes, rRNA , Humans , Infarction, Middle Cerebral Artery/metabolism , Ischemic Stroke/therapy , Isoflavones/therapeutic use , Metabolomics/methods , RNA, Ribosomal, 16S/genetics , Rats , Rats, Sprague-Dawley , Stroke/drug therapy
4.
Food Funct ; 12(17): 8056-8067, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34286782

ABSTRACT

Ischemic stroke (IS) caused by cerebral arterial occlusion is the leading cause of global morbidity and mortality. Cellular oxidative stress and inflammation play a vital role in the pathological process of neural damage in IS. It is necessary to develop functional food or drugs, which target neuroinflammation and oxidation mechanisms against IS. The molecule compound aloe-emodin (AE) is derived from aloe and rhubarb. However, the exact mechanism of the pharmacological action of AE on IS remains unclear. Here, for aiming to demonstrate the mechanism of AE, our study explored the middle cerebral occlusion reperfusion (MCAO/R) rats in vivo, oxygen and glucose deprivation reperfusion (OGD/R), and lipopolysaccharide (LPS)-stimulated cells in vitro. We found that AE significantly improved the infarct size and behavioral score of MCAO/R rats, decreased the expression of TNF-α, MDA, LDH, Caspase 3, and increased the expression of SOD, Bcl-2/Bax. Liquid chromatography-mass spectrometry (LC/MS) results showed that AE could penetrate the blood-brain barrier in the sham group and MCAO/R group. In vitro, AE significantly protected SH-SY5Y cells from the insult of OGD/R and reduced the production of inflammatory cytokines in BV2 cells stimulated by LPS. In vivo and in vitro, western blot analysis results showed that AE significantly increased the expression of PI3K, AKT and mTOR proteins. In addition, AE significantly decreased NF-κB protein expression in BV2 cells. The use of AKT-specific inhibitor MK-2206 2HCL to inhibit AKT expression can block the protective effect of AE on SH-SY5Y cells subjected to OGD/R insults. Overall, our study suggests that AE protected against cerebral ischemia-reperfusion injury probably via the PI3K/AKT/mTOR and NF-κB signaling pathways. Thus, these results indicated that AE could be a promising first-line therapy for preventing and treating ischemic stroke and can be used as functional food.


Subject(s)
Aloe/chemistry , Emodin/administration & dosage , Ischemic Stroke/complications , Neuroinflammatory Diseases/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/administration & dosage , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Humans , Male , NF-kappa B/genetics , NF-kappa B/metabolism , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/metabolism , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics
5.
Article in English | MEDLINE | ID: mdl-34035824

ABSTRACT

Excessive alcohol intake is a major cause of chronic liver damage and is highly associated with the development of a spectrum of hepatic disorders, including steatohepatitis, liver cirrhosis, and liver cancer. Thus, we aimed to explore the hepatoprotective effects of an aqueous mulberry leaf extract (AME) on alcoholic fatty liver disorder (AFLD) by using a mouse model fed with excessive ethanol. Compared with the normal diet, the ethanol diet significantly increased the body weight of the mice, while the AME supplement reduced the weight gain caused by the ethanol diet. The ethanol diet also attenuated the activity of alcohol dehydrogenase and antioxidant enzymes but increased lipid peroxidation in the liver, which were reversed by AME supplementation. Additionally, AME supplementation diminished the ethanol diet-induced hepatic leukocyte infiltration and expressions of IL-6 and TNFα. Moreover, AME supplementation also reduced the ethanol-diet-induced lipid accumulation and expression of 1-acylglycerol-3-phosphate acyltransferase, acetyl-CoA carboxylase, low-density lipoprotein receptor, and sterol regulatory element-binding protein-1/2 in the liver. Collectively, AME supplementation improved liver lipid accumulation and proinflammatory response in mice induced by the ethanol diet, which was associated with the upregulation of ethanol-metabolizing enzymes and the downregulation of lipogenesis components.

6.
Food Chem Toxicol ; 137: 111148, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31982449

ABSTRACT

Trans-cinnamic acid (tCA) is a phenylpropenoic acid, which occurs naturally in a number of plants. In this study, the anti-obese effects of tCA were evaluated in oleic acid (OA)-induced HepG2 cells and high fat diet (HFD)-fed mice. The results showed tCA treatment significantly decreased lipid accumulation in HepG2 cells exposed to OA. Furthermore, administration of tCA (40 mg/kg/day) curbed body weight gains, reduced liver and adipose tissue weight, and ameliorated hepatic steatosis and adipose hypertrophy in mice fed with HFD. In addition, significant decrease in plasma levels of TG, TC and LDL-C were also observed in HFD-fed mice with tCA treatment. Collectively, tCA may play a vital role in preventing and treating diet induced obesity.


Subject(s)
Anti-Obesity Agents/therapeutic use , Cinnamates/therapeutic use , Fatty Liver/drug therapy , Animals , Body Weight/drug effects , Cinnamates/chemistry , Diet, High-Fat , Dietary Supplements , Eating/drug effects , Fatty Liver/pathology , Hep G2 Cells , Humans , Liver/pathology , Male , Mice, Inbred C57BL , Organ Size/drug effects , Stereoisomerism
7.
PLoS One ; 12(12): e0189065, 2017.
Article in English | MEDLINE | ID: mdl-29216237

ABSTRACT

Abelmoschus esculentus (AE), a commonly consumed vegetable, is well-known for its anti-hyperglycemic effects. However, few scientific reports have identified its targets because mucilage increases the difficulty of manipulation. We recently reported extraction steps to obtain subfractions of AE, which were found to attenuate the adverse effects of high glucose and fatty acid in vitro. In this study, we used modified extraction steps and type 2 diabetic rats to explore whether AE subfractions can improve the metabolic disturbances caused by insulin resistance in vivo. AE subfractions (F1, F2, and FR) were prepared. The type 2 diabetes model was induced by feeding male Sprague-Dawley rats with a high-fat diet and injecting them with 35 mg/kgbw streptozotocin when their body weight reached 475 ± 15 g. After a hyperglycemic status had been confirmed, the rats were tube-fed with or without different doses of AE subfractions. Serum glucose, lipid markers, insulin, HbA1c and HOMA-IR were measured in the following 12 weeks. Serum glucose promptly increased and insulin resistance was noted in the diabetic rats (glucose: 360-500 mg/dl, HOMA-IR 9.8-13.8). F2, rich in polysaccharides and carbohydrates, was most effective in attenuating hyperglycemia and insulin resistance (glucose: 200 mg/dl; HOMA-IR: 5.3) and especially HbA1C (from 8.0% to 6.5%). All of the AE subfractions lowered the level of triglycerides and free fatty acid, but not the level of total cholesterol. FR significantly increased the high-density lipoprotein/low-density lipoprotein ratio, indicating its benefits for lipoprotein profiles. While F2 and FR were associated with weight gain, F1 possessed an anti-obese effect. In conclusion, whether it is consumed as a vegetable or as a nutraceutical, AE has the potential to be an adjuvant therapy for diabetes. AE subfractions could be developed individually and deserve further investigation.


Subject(s)
Abelmoschus/chemistry , Diabetes Mellitus, Type 2/drug therapy , Dietary Supplements , Plant Extracts/therapeutic use , Animals , Diabetes Mellitus, Type 2/complications , Dyslipidemias/drug therapy , Glycated Hemoglobin/antagonists & inhibitors , Glycated Hemoglobin/biosynthesis , Kidney/drug effects , Liver/drug effects , Male , Plant Extracts/adverse effects , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL