Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Bone Miner Metab ; 41(6): 772-784, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37898986

ABSTRACT

INTRODUCTION: CCN1 is an immediate-early gene product pivotal for arthritis progression. We have previously shown that sirtuin 6 (SIRT6) inhibited hypoxia-induced CCN1 expression in osteoblasts. Herein we examined the contribution of cyclic AMP-responsive element binding protein (CREB)/CRE to this suppressive action and the influence of CCN1 on cyclooxygenase (COX) 2 synthesis. MATERIALS AND METHODS: MC3T3-E1 murine osteoblasts were cultured under normoxia (21% oxygen) or hypoxia (2% oxygen). Expressions of CCN1, phospho-CREB (Ser133), COX2 and relevant kinases were assessed by Western blot. SIRT6 was overexpressed in cultured osteoblasts and arthritic joints by a lentiviral-based technique. Activities of CCN1 gene promoter constructs were examined by luciferase reporter assay. Interaction between CREB and CCN1 promoter was assessed by chromatin immunoprecipitation (ChIP). Collagen-induced arthritis (CIA) was established in 20 rats to evaluate the effects of SIRT6 therapy on osteoblastic expressions of phospho-CREB, CCN1 and COX2. RESULTS: SIRT6 suppressed hypoxia-enhanced CCN1 expression and CREB phosphorylation. Attenuation of calcium/calmodulin-dependent protein kinase II (CaMKII) may be responsible for SIRT6-induced CREB inhibition. CRE at - 286 bp upstream of the ATG start codon was essential for CCN1 expression under hypoxia and SIRT6 reduced hypoxia-stimulated CREB/CRE interaction. Forced expression of CREB rescued SIRT6-suppressed CCN1 synthesis. CCN1 induced COX2 expression in osteoblasts. In rat CIA, the therapeutic effect of SIRT6 was accompanied by decreases in osteoblastic expressions of phospho-CREB, CCN1 and COX2. CONCLUSION: Our study indicated that the benefits of SIRT6 to inflammatory arthritis and bone resorption are at least partially derived from its modulation of CREB/CCN1/COX2 pathway in osteoblasts.


Subject(s)
Arthritis, Experimental , Sirtuins , Rats , Mice , Animals , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/pharmacology , Osteoblasts/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/pharmacology , Hypoxia , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Phosphorylation , Oxygen/metabolism , Oxygen/pharmacology , Sirtuins/metabolism , Sirtuins/pharmacology , Cyclic AMP/metabolism , Cyclic AMP/pharmacology
2.
Biomolecules ; 10(9)2020 09 17.
Article in English | MEDLINE | ID: mdl-32957726

ABSTRACT

Oral cancer (OC) is a serious health problem. Surgery is the best method to treat the disease but might reduce the quality of life of patients. Photodynamic therapy (PDT) may enhance quality of life but with some limitations. Therefore, the development of a new strategy to facilitate PDT effectiveness has become crucial. ATP-binding cassette G2 (ABCG2) is a membrane protein-associated drug resistance and stemness in cancers. Here, we examined whether ABCG2 plays an important role in regulating the treatment efficacy of PDT and whether ABCG2 inhibition by natural compounds can promote the effect of PDT in OC cells. Several head and neck cancer cells were utilized in this study. OECM1 and SAS cells were selected to investigate the relationship between ABCG2 expression and protoporphyrin IX (PpIX) accumulation. Western blot analysis, flow cytometry analysis, and survival probability were performed to determine PDT efficacy and cellular stemness upon treatment of different dietary compounds, including epigallocatechin gallate (EGCG) and curcumin. In this study, we found that ABCG2 expression varied in OC cells. Hypoglycemic culture for SAS cells enhanced ABCG2 expression as higher ABCG2 expression was associated with lower PpIX accumulation and cellular stemness in OC cells. In contrast, suppression of ABCG2 expression by curcumin and tea polyphenol EGCG led to greater PpIX accumulation and enhanced PDT treatment efficiency in OC cells. In conclusion, ABCG2 plays an important role in regulating the effect of PDT. Change in glucose concentration and treatment with natural compounds modulated ABCG2 expression, resulting in altered PDT efficacy for OC cells. These modulations raise a potential new treatment strategy for early-stage OCs.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Catechin/analogs & derivatives , Curcumin/pharmacology , Gefitinib/pharmacology , Mouth Neoplasms/metabolism , Neoplasm Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Catechin/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Kaplan-Meier Estimate , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Neoplasm Proteins/antagonists & inhibitors , Photochemotherapy/methods , Photosensitizing Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL