Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 266(Pt 2): 131383, 2024 May.
Article in English | MEDLINE | ID: mdl-38580030

ABSTRACT

The development of antibiotic-loaded microneedles has been hindered for years by limited excipient options, restricted drug-loading space, poor microneedle formability, and short-term drug retention. Therefore, this study proposes a dissolving microneedle fabricated from the host-defense peptide ε-poly-l-lysine (EPL) as an antibacterial adjuvant system for delivering antibiotics. EPL serves not only as a major matrix material for the microneedle tips, but also as a broad-spectrum antibacterial agent that facilitates the intracellular accumulation of the antibiotic doxycycline (DOX) by increasing bacterial cell membrane permeability. Furthermore, the formation of physically crosslinked networks of EPL affords microneedle tips with improved formability, good mechanical properties, and amorphous nanoparticles (approximately 7.2 nm) of encapsulated DOX. As a result, a high total loading content of both antimicrobials up to 2319.1 µg/patch is achieved for efficient transdermal drug delivery. In a Pseudomonas aeruginosa-induced deep cutaneous infection model, the EPL microneedles demonstrates potent and long-term effects by synergistically enhancing antibiotic activities and prolonging drug retention in infected lesions, resulting in remarkable therapeutic efficacy with 99.91 % (3.04 log) reduction in skin bacterial burden after a single administration. Overall, our study highlights the distinct advantages of EPL microneedles and their potential in clinical antibacterial practice when loaded with amorphous DOX nanoparticles.


Subject(s)
Anti-Bacterial Agents , Doxycycline , Nanoparticles , Needles , Polylysine , Polylysine/chemistry , Doxycycline/administration & dosage , Doxycycline/pharmacology , Doxycycline/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Animals , Pseudomonas aeruginosa/drug effects , Mice , Drug Delivery Systems , Administration, Cutaneous , Skin/drug effects , Skin/microbiology , Pseudomonas Infections/drug therapy
2.
Acta Biomater ; 142: 113-123, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35189382

ABSTRACT

With the increased emergence and threat of multi-drug resistant microorganisms, MXenes have become not only an emerging class of two-dimensional functional nanomaterials, but also potential nanomedicines (i.e., antimicrobial agents) that deserve further exploration. Very recently, Ti3C2 MXene was observed to offer a unique membrane-disruption effect and superior light-to-heat conversion efficiency, but its antibacterial property remains unsatisfactory due to poor MXene-bacteria interactions, low photothermal therapy efficiency, and occurrence of bacterial rebound in vivo. Herein, the cationic antibiotic ciprofloxacin (Cip) is combined with Ti3C2 MXene, and a hybrid hydrogel was constructed by incorporating Cip-Ti3C2 nanocomposites into the network structure of a Cip-loaded hydrogels to effectively trap and kill bacteria. We found that the Cip-Ti3C2 nanocomposites achieved an impressive in vitro bactericidal efficiency of >99.99999% (7.03 log10) for the inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by combining chemotherapy with photothermal therapy. In an MRSA-induced murine abscess model, the hybrid hydrogel simultaneously achieved high-efficiency sterilization and long-term inhibition effects, avoiding the rebound of bacteria after photothermal therapy, and thus maximized the in vivo therapeutic efficacy of Ti3C2 MXene-based systems. Overall, this work provides a strategy for efficiently combating localized bacterial infection by rationally designing MXene-based hybrid hydrogels. STATEMENT OF SIGNIFICANCE: Two-dimensional Ti3C2 MXene was recently regarded as a promising functional nanomaterial, however, its antibacterial applications are limited by the poor MXene-bacteria interactions, low photothermal therapy efficiency, and the occurrence of bacterial rebound in vivo. This work aims to construct a Ti3C2 MXene-based hybrid hydrogel for chemo-photothermal therapy and enhance the antimicrobial performance via a combination of the high-efficiency sterilization of ciprofloxacin-Ti3C2 nanocomposites with the long-term inhibition effect of ciprofloxacin hydrogel. The present study provides an example of efficient MXene-based antimicrobials to treat localized bacterial infection such as methicillin-resistant Staphylococcus aureus (MRSA)-induced skin abscess.


Subject(s)
Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Abscess , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Ciprofloxacin/pharmacology , Hydrogels/pharmacology , Mice , Titanium/pharmacology
3.
Am J Cardiovasc Drugs ; 19(6): 541-552, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31292859

ABSTRACT

Heart failure (HF) with reduced ejection fraction (HFrEF) presents as the severest phenotype on the spectrum of HF. Although great progress has been made with respect to its treatment over the past 3 decades, morbidity and mortality remain high, posing a big burden on human health. Recent evidence suggests vitamin D has a critical role in maintaining heart health through activation of the vitamin D receptor expressed in cardiomyocytes, and vitamin D deficiency may be implicated in the pathophysiology of HFrEF through activation of the renin-angiotensin system, impaired calcium handling, exaggerated inflammation, secondary hyperparathyroidism, pro-fibrotic properties, and proatherogenic potential. Additionally, epidemiological data disclosed that vitamin D deficiency is highly prevalent in patients with HFrEF and is associated with poor clinical outcomes. However, randomized control trials of vitamin D supplementation in HF, especially in HFrEF, have shown inconsistent results. Thus, this article aims to review the epidemiology, pathophysiology, and prognostic value of vitamin D deficiency in HF, with a special focus on randomized control trials associated with vitamin D supplementation in patients with HFrEF.


Subject(s)
Heart Failure/epidemiology , Heart Failure/physiopathology , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/physiopathology , Atrial Fibrillation/epidemiology , Atrial Fibrillation/physiopathology , Calcium/metabolism , Dietary Supplements , Extracellular Matrix/physiology , Fibrosis/epidemiology , Fibrosis/physiopathology , Humans , Hyperparathyroidism, Secondary/epidemiology , Hyperparathyroidism, Secondary/physiopathology , Inflammation Mediators/metabolism , Myocytes, Cardiac/metabolism , Prognosis , Renin-Angiotensin System/physiology , Severity of Illness Index , Stroke Volume/physiology , Vitamin D/metabolism , Vitamin D/therapeutic use , Vitamin D Deficiency/drug therapy
4.
Int J Biol Macromol ; 82: 308-14, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26432374

ABSTRACT

This study was aimed to investigate the antihypertensive effect of a polysaccharide fraction from Cordyceps sinensis on spontaneously hypertensive rats (SHR). The CSP1, one component of Cordyceps sinensis polysaccharides (CSP), was obtained after water extraction, deproteinization, de-colorization and purification with DEAE-cellulose 52. And a more homogeneous component CSP1-2 was obtained using Sepharose CL-6B chromatography. CSP1-2 mainly consisted of mannose, glucose and galactose in a molar ratio of about 2:2:1 and its average molecular weight was approximately 2.70×10(4)Da. Pharmacological tests showed that CSP1, in which the CSP1-2 was its main component, had antihypertensive effect by stimulating the secretion of vasodilator NO, decreasing the level of ET-1, epinephrine, noradrenaline and angiotensin II, inhibiting the increase of transforming growth factor ß1 (TGF-ß1) and lowering the level of inflammatory mediator of C-reactive protein (CRP). These results suggested that CSP1 may possess high potential in treating hypertension.


Subject(s)
Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Cordyceps/chemistry , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Animals , Antihypertensive Agents/isolation & purification , Biomarkers , Blood Pressure/drug effects , Fungal Polysaccharides/isolation & purification , Hypertension/blood , Hypertension/drug therapy , Hypertension/physiopathology , Male , Molecular Weight , Rats , Rats, Inbred SHR , Spectroscopy, Fourier Transform Infrared
5.
Brain Res ; 1361: 115-23, 2010 Nov 18.
Article in English | MEDLINE | ID: mdl-20840842

ABSTRACT

Curcumin can bind senile plaques and promote disaggregation of existing amyloid deposits and prevent aggregation of new amyloid deposits. Curcumin can also reverse distorted and curvy neurites around senile plaques and repair the neuritic abnormalities. We hypothesized whether altered neurite morphologies resulting from Aß production had anything to do with the changes of expression of microtubule-associated protein 2 (MAP2), but curcumin could reverse damaged neurites by upregulation of MAP2 expression. In present study we designed and chemically synthesized curcumin and its six derivatives. After screening the protective effect of curcumin and derivatives, we found that the viability of SK-N-SH cell model induced by Aß1-42 was significantly increased by curcumin and Cur1, and the expression of MAP-2 protein was obviously up-regulated in immunocytochemical staining and Western blot. The cell morphologies, including the number of neurites, neurite growth and neurite extension, were significantly improved. Cur1 showed more significant protective effect on SK-N-SH cells than curcumin. Our study revealed for the first time that the neuroprotective effect of curcumin and curcumin derivatives not only directly depends on their special chemical constitution, but they can resist to Aß damage by up-regulation of MAP-2 expression. In view of the special advantages of curcumin and Cur1, we reasonably believe that curcumin and Cur1 may be considered as an ideal therapeutic agent for the treatment of AD.


Subject(s)
Amyloid beta-Peptides/toxicity , Curcumin/analogs & derivatives , Curcumin/pharmacology , Enzyme Inhibitors/pharmacology , Microtubule-Associated Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Peptide Fragments/toxicity , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , Humans , Immunohistochemistry , Neurites/drug effects , Neuroprotective Agents/pharmacology , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL