ABSTRACT
Background: Hypertriglyceridemia-induced acute pancreatitis (HTG-AP) is an increasingly recognized and potentially severe form of acute pancreatitis. The effective management of HTG-AP is critical due to its association with significant morbidity and mortality. HTG-AP poses a considerable burden on affected individuals and healthcare systems. It can result in persistent upper abdominal pain, nausea, vomiting, abdominal distension, fever, and in severe cases, hypotension or shock and multiple organ dysfunction. Standard treatment strategies often involve lipid-lowering agents, but the optimal therapeutic approach remains a subject of ongoing research. This study aims to evaluate the efficacy of atorvastatin calcium, fenofibrate, and acipimox, either individually or in combination, in the treatment of HTG-AP, providing insights into more effective management strategies. Methods: 150 HTG-AP patients admitted to the first hospital of Putian from June 2020 to December 2022 were selected. The age range of the patients included in the study was between 30 and 70 years, with an average age of approximately 48 years. The cohort consisted of 90 males and 60 females, resulting in a male-to-female ratio of 3:2. The patients were grouped: atorvastatin calcium, acipimox, fenofibrate, fenofibrate + Atorvastatin calcium, fenofibrate + acipimox, and no drug. The therapeutic effects and clinical indicators of the six groups were compared. Results: Patients in the fenofibrate + acipimox and fenofibrate groups experienced significantly reduced hospitalization duration compared to the other groups. They also had shorter abdominal pain relief time and gastrointestinal function relief time. Additionally, these groups had lower peak levels of amylase (an enzyme) and cholesterol compared to the other groups. In terms of neutrophil (NEUT) increase, the fenofibrate + acipimox, atorvastatin calcium, and fenofibrate groups had significantly lower peak levels compared to the other groups, indicating a less pronounced increase in NEUT. Furthermore, the fenofibrate and acipimox groups exhibited significantly lower peak levels of C-reactive protein (CRP) compared to the other groups. CRP is an indicator of inflammation. On the other hand, the atorvastatin calcium group had higher levels of procalcitonin (a marker of infection) and a higher peak score on the acute physiology and chronic health evaluation II (APACHE II) scale, which assesses the severity of acute pancreatitis, compared to the other groups (all P < .05). Conclusion: The findings of this study highlight the effectiveness of combining fenofibrate and acipimox in the treatment of HTG-AP, leading to rapid disease recovery and significant improvement in clinical symptoms. These results have important implications for clinical practice, as the combination therapy can be widely adopted as an effective treatment strategy for HTG-AP patients. Moreover, this study provides valuable insights into the management of HTG-AP and suggests that lipid-lowering agents, such as atorvastatin calcium and fenofibrate, play a crucial role in the treatment of this condition. However, further research is needed to explore the optimal dosages, treatment durations, and potential side effects of these medications in HTG-AP patients.
ABSTRACT
BACKGROUND: The combination of drug delivery with immune checkpoint targeting has been extensively studied in cancer therapy. However, the clinical benefit for patients from this strategy is still limited. B7 homolog 3 protein (B7-H3), also known as CD276 (B7-H3/CD276), is a promising therapeutic target for anti-cancer treatment. It is widely overexpressed on the surface of malignant cells and tumor vasculature, and its overexpression is associated with poor prognosis. Herein, we report B7H3 targeting doxorubicin (Dox)-conjugated gold nanocages (B7H3/Dox@GNCs) with pH-responsive drug release as a selective, precise, and synergistic chemotherapy-photothermal therapy agent against non-small-cell lung cancer (NSCLC). RESULTS: In vitro, B7H3/Dox@GNCs exhibited a responsive release of Dox in the tumor acidic microenvironment. We also demonstrated enhanced intracellular uptake, induced cell cycle arrest, and increased apoptosis in B7H3 overexpressing NSCLC cells. In xenograft tumor models, B7H3/Dox@GNCs exhibited tumor tissue targeting and sustained drug release in response to the acidic environment. Wherein they synchronously destroyed B7H3 positive tumor cells, tumor-associated vasculature, and stromal fibroblasts. CONCLUSION: This study presents a dual-compartment targeted B7H3 multifunctional gold conjugate system that can precisely control Dox exposure in a spatio-temporal manner without evident toxicity and suggests a general strategy for synergistic therapy against NSCLC.
Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Doxorubicin , Lung Neoplasms , Nanoparticles , Photothermal Therapy , Humans , B7 Antigens , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Liberation , Gold , Hydrogen-Ion Concentration , Hyperthermia, Induced , Lung Neoplasms/drug therapy , Phototherapy , Photothermal Therapy/methods , Tumor Microenvironment , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Animals , Mice , Xenograft Model Antitumor AssaysABSTRACT
Introduction: Selaginella doederleinii Hieron is a traditional Chinese herbal medicine, the ethyl acetate extract from Selaginella doederleinii (SDEA) showed favorable anticancer potentials. However, the effect of SDEA on human cytochrome P450 enzymes (CYP450) remains unclear. To predict the herb-drug interaction (HDI) and lay the groundwork for further clinical trials, the inhibitory effect of SDEA and its four constituents (Amentoflavone, Palmatine, Apigenin, Delicaflavone) on seven CYP450 isoforms were investigated by using the established CYP450 cocktail assay based on LC-MS/MS. Methods: Appropriate substrates for seven tested CYP450 isoforms were selected to establish a reliable cocktail CYP450 assay based on LC-MS/MS. The contents of four constituents (Amentoflavone, Palmatine, Apigenin, Delicaflavone) in SDEA were determined as well. Then, the validated CYP450 cocktail assay was applied to test the inhibitory potential of SDEA and four constituents on CYP450 isoforms. Results: SDEA showed strong inhibitory effect on CYP2C9 and CYP2C8 (IC50 ≈ 1 µg/ml), moderate inhibitory effect against CYP2C19, CYP2E1 and CYP3A (IC50 < 10 µg/ml). Among the four constituents, Amentoflavone had the highest content in the extract (13.65%) and strongest inhibitory effect (IC50 < 5 µM), especially for CYP2C9, CYP2C8 and CYP3A. Amentoflavone also showed time-dependent inhibition on CYP2C19 and CYP2D6. Apigenin and Palmatine both showed concentration-dependent inhibition. Apigenin inhibited CYP1A2, CYP2C8, CYP2C9, CYP2E1 and CYP3A. Palmatine inhibited CYP3A and had a weak inhibitory effect on CYP2E1. As for Delicaflavone, which has the potential to develop as an anti-cancer agent, showed no obvious inhibitory effect on CYP450 enzymes. Conclusion: Amentoflavone may be one of the main reasons for the inhibition of SDEA on CYP450 enzymes, the potential HDI should be considered when SDEA or Amentoflavone were used with other clinical drugs. On the contrast, Delicaflavone is more suitable to develop as a drug for clinical use, considering the low level of CYP450 metabolic inhibition.
ABSTRACT
P-glycoprotein (P-gp), a transmembrane glycoprotein widely expressed on the surface of various cells, is highly associated with multidrug resistance (MDR) that heralds the malignant progress of disease after drug treatment. Notably, there have been reported that serum P-gp is a potential marker for assessing the progression of disease resistance. Currently, there are few methods for point-of-care serum P-gp detection. In this study, we proposed a gold nanoparticles/electrochemically reduced graphene oxide@carbon nanotube (AuNPs/ERGO@CNT) modified immunosensor based on a one-step electrochemical co-reduction method. The limit of detection (LOD) of our constructed electrochemical immunosensor for P-gp detection reached 0.13 ng/mL, and the detection results in serum were consistent with ELISA. The developed immunosensor is expected to provide a scientific basis for the clinical application of serum P-gp monitoring and integrated medicine.
Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Nanocomposites , Gold , Immunoassay/methods , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection , ATP Binding Cassette Transporter, Subfamily BABSTRACT
OBJECTIVE: Human milk (HM) has antibacterial properties due to the presence of immune-modulators, including lactoferrin (LF). This study will determine effect(s) of HM maturation, fortification, and storage conditions on LF levels and its antibacterial properties. STUDY DESIGN: HM samples (n = 30) were obtained from preterm and term mothers. The LF levels were analyzed by ELISA, and the antibacterial activity was measured after inoculation with Escherichia coli. RESULTS: The highest level of LF in preterm HM was observed in the first week of lactation. However, storage of preterm HM at 4°C decreased LF levels significantly. Both LF levels and antibacterial activity in preterm HM was lower compared with term HM, but significantly higher than donor HM even after HM-based fortification. LF supplementation of donor HM improved its antibacterial activity. CONCLUSION: Preterm infants fed donor HM, formula, or stored HM at 4°C may benefits from LF supplementation to improve HM antibacterial properties. KEY POINTS: · Milk LF levels vary with storage and maturity.. · Donor milk is deficient in LF even after adding HM-based fortification.. · Donor HM and formula fed infants may benefit from LF..
Subject(s)
Infant, Premature , Lactoferrin , Infant , Female , Infant, Newborn , Humans , Lactoferrin/pharmacology , Milk, Human , Anti-Bacterial Agents/pharmacology , Dietary SupplementsABSTRACT
BACKGROUND: Myeloid cell-mediated immunosuppression is a major obstacle to checkpoint blockade immunotherapy. We previously reported that total biflavonoids extract from Selaginella doederleinii (TBESD) and a flavone monomer isolated from TBESD, named Delicaflavone, have favorable anti-tumor activity. However, whether TBESD and Delicaflavone could affect the tumor microenvironment (TME) remains unclear. PURPOSE: In this study, we focused on the TME to determine whether TBESD and Delicaflavone could restore anti-tumor immune response. METHODS: 4T1 tumor-bearing immunocompetent BALB/c mice and T cell-deficient nude mice were used to examine the effect of TBESD on T cell-mediated immunity in vivo. Multi-parameter flow cytometry was conducted to evaluate the impacts of TBESD on TME. Primary cells, including murine CD8+ T cells, tumor associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) were prepared to investigate the modulatory activities of TBESD on immune cells. It was further determined whether Delicaflavone or Amentoflavone, two typical functional biflavones from TBESD, mediated those effects of TBESD. Finally, the impacts of TBESD and Delicaflavone on Jak1/STAT6 signaling pathway were explored via western blot. RESULTS: We found that TBESD significantly reduced 4T1 tumor growth in immunocompetent BALB/c mice, but not in nude mice. This effect was associated with the regulation of TME, shown as an increase in functional T cells and M1 phenotype TAMs (M1-TAMs), and a decrease in M2 phenotype TAMs (M2-TAMs), monocytic-MDSCs (M-MDSCs) and regulatory T cells (Tregs) in TBESD-treated BALB/c mouse 4T1 tumors. It was found ex vivo that TBESD restrained the viability and immunosuppressive properties of M2-TAMs and M-MDSCs, especially for the loss of arginase-1 expression. Additionally, TBESD re-educated M2-TAMs to an M1 like phenotype. Further investigations determined that Delicaflavone predominantly mediated the immuno-modulatory activities of TBESD both ex vivo and in vivo. Finally, Delicaflavone and TBESD blocked Jak1/STAT6 signaling pathway in M2-TAMs and MDSCs. CONCLUSION: The present study suggests Delicaflavone as a potent natural inhibitor of M2-TAMs and MDSCs, which fills the gap in knowledge on the immuno-modulatory effects of TBESD and Delicaflavone, and could have translational implications to improve the efficacy of cancer immunotherapy.
Subject(s)
Neoplasms , Selaginellaceae , Animals , Mice , Mice, Nude , CD8-Positive T-Lymphocytes , Myeloid Cells , Mice, Inbred BALB C , Immunity , Immunosuppression Therapy , Cell Line, Tumor , Tumor MicroenvironmentABSTRACT
Selaginella doederleinii Hieron is a traditional Chinese medicinal herb widely used to treat different cancers. Previously, we showed that the total bioflavonoid extract of S. doederleinii (TBESD) exhibits anti-carcinogenic activities both in vitro and in vivo. However, the plasma protein binding and pharmacokinetics parameters of TBESD remain unclear. To investigate plasma protein binding, tissue distribution, and excretion of TBESD, rats were administered a single dose of TBESD (600 mg/kg) intragastrically and tissue distribution and excretion of TBESD components were determined by rapid high-performance liquid chromatography and tandem mass spectrometry. TBESD binding to human serum albumin (HSA) was assessed by fluorescence spectroscopy. TBESD components amentoflavone, delicaflavone, robustaflavone, 2â³,3â³-dihydro-3',3â´-biapigenin, and 3',3â´-binaringenin were rapidly absorbed and distributed in various tissues, mostly in the lungs, kidneys, and ovaries, without long-term accumulation. The excretion of bioflavonoids occurred mostly via the intestinal tract and constituted 30% of the administered dose up to 48 h. Spectral analysis indicated that TBESD had a dynamic quenching effect on HSA by binding to one HSA site through hydrophobic interactions and hydrogen bond formation. This is the first comprehensive report on the tissue distribution, excretion, and plasma protein binding of TBESD. This study provides important information on TBESD pharmacokinetics necessary for its further development into a therapeutic form for clinical applications.
ABSTRACT
BACKGROUND: Chemotherapy drugs especially anthracyclines are widely used in the treatment of hematological malignancies and solid tumors. However, their clinical application is limited by dose-dependent and irreversible heart injury, which increases the risk of congestive heart failure and heart-related mortality. PURPOSE: This study aims to investigate the effect and mechanism of the natural flavonoid isoorientin (ISO) combined with doxorubicin (DOX) on the proliferation of tumor cells and improve the survival rate of DOX-injured cardiomyocytes. STUDY DESIGN/METHODS: Cardiomyocyte H9c2 and a variety of tumor cells were used to evaluate the protective effect of ISO on DOX-induced myocardial injury and enhance the anticancer effects of DOX. DOX chemotherapy-injured mice were used to evaluate the cardioprotective effect of ISO. RESULTS: The antiproliferation of DOX on Hela, HepG2, HT-29, and A549 cells could be increased synergistically when cotreated with ISO in vitro. ISO could also improve the survival rate of DOX-injured cardiomyocytes by reducing reactive oxygen species, maintaining mitochondrial function, and inhibiting apoptosis. In mice receiving DOX, a protective effect on myocardial tissue, which was reflected by improved survival state of mice receiving chemotherapy, was observed. The ECG, myocardial zymogram data, HE staining, and TEM observation of myocardial tissue sections showed that ISO had a dose-dependent protective effect on the mouse hearts injured by DOX. Network pharmacology and cardiomyocyte proteomics were used to seek for related target proteins to reveal the protective mechanism of ISO on mouse models, and some potential targets (including caspase-3, EGFR, MAPK1, ESR1, CDC42, STAT1, JAK2, LCK, and CDK2) were generated. Western blotting was further used to verify that ISO upregulated Nrf2 and TGF-ß3 by downregulating the phosphorylation levels of JNK and p38 proteins on the MAPK pathway and the Akt and Stat3 expression levels. The downregulation of cleaved caspase-3 and upregulation of Bcl-xl by ISO further confirmed its inhibition on caspase-dependent cardiomyocyte apoptosis. CONCLUSION: ISO could be a potential synergistic anticancer agent with a favorable property of reducing the cardiotoxicity for DOX, and the effect mechanism could refer to the inhibition of ISO on MAPK and caspase-dependent apoptosis pathways.
Subject(s)
Caspases , Heart Injuries , Animals , Apoptosis , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Caspase 3/metabolism , Caspases/metabolism , Doxorubicin/pharmacology , Luteolin , Mice , Mitogen-Activated Protein Kinases/metabolism , Myocytes, Cardiac , Proto-Oncogene Proteins c-akt/metabolism , Signal TransductionABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Previously, the total bioï¬avonoids extract from Selaginella doederleinii (SDTBE) presented favorable in vitro and in vivo activities against non-small cell lung cancer (NSCLC), hinting at its medicinal potential. However, up to nowadays, targets and integrative action mechanisms of SDTBE are still not very clear, which presents an obstacle to the development of herbal medicine. AIM OF THE STUDY: The present study aimed to disclose the potential targets and integrative action mechanism of SDTBE against NSCLC. MATERIALS AND METHODS: A system pharmacology-based strategy including target fishing, network pharmacology analysis and molecular docking were applied to predict the potential targets and pathways for the seven main active ingredients in SDTBE. A proteomics study was subsequently performed for validating the affected pathways and possible targets. Western blot assay, mouse xenograft tumor model and immunofluorescence assays were used to further confirm the key targets and integrative action mechanisms of SDTBE against NSCLC. RESULTS: By system pharmacology, it was inferred that SDTBE could mainly act on mitogen-activated protein kinase (MAPK) and PI3K-AKT signaling pathways by targeting epidermal growth factor receptor (EGFR), protein kinase B (AKT) and mitogen-activated or extracellular signal-regulated protein kinase (MEK), which was validated by proteomics results, and further confirmed in vitro and in vivo by Western blot and immunofluorescence assays. CONCLUSION: SDTBE targeting multi-targets including EGFR, AKT and MEK could exert its anti-NSCLC effect mainly via MAPK and PI3K-AKT signaling pathways.
Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Flavonoids/pharmacology , Lung Neoplasms/drug therapy , Selaginellaceae/chemistry , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Flavonoids/isolation & purification , Humans , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , Xenograft Model Antitumor AssaysABSTRACT
Bacterial resistance to antibiotics have become one of the most severe threats in global public health, so the development of new-style antimicrobial agents is urgent. In this work, quaternized carbon quantum dots (qCQDs) with broad-spectrum antibacterial activity were synthesized by a simple green "one-pot" method using dimethyl diallyl ammonium chloride and glucose as reaction precursors. The qCQDs displayed satisfactory antibacterial activity against both Gram-positive and gram-negative bacteria. In rat models of wounds infected with mixed bacteria, qCQDs obviously restored the weight of rats, significantly reduced the death of rats from severe infection, and promoted the recovery and healing of infected wounds. Biosafety tests confirmed that qCQDs had no obvious toxic and side effects during the testing stage. The analysis of quantitative proteomics revealed that qCQDs mainly acted on ribosomal proteins in Staphylococcus aureus (Gram-positive bacteria) and significantly down-regulated proteins associated with citrate cycle in Escherichia coli (Gram-negative bacteria). Meanwhile, real-time quantitative PCR confirmed that the variation trend of genes corresponding to the proteins associated with ribosome and citrate cycle was consistent with the proteomic results after treatment of qCQDs, suggesting that qCQDs has a new antibacterial mechanism which is different from the reported carbon quantum dots with antibacterial action. STATEMENT OF SIGNIFICANCE: With the development of the research on carbon quantum dots, the application of carbon quantum dots in the field of medicine has attracted extensive attention. In this paper, quaternized carbon quantum dots (qCQDs) with antimicrobial activity prepared by specific methods were studied, including antimicrobial spectrum, antimicrobial mechanism and in vivo antimicrobial application. The antimicrobial mechanism of qCQDs was studied by proteomics and RT-qRCR, and the different mechanisms of qCQDs against Gram-positive and Gram-negative bacteria were also found. This study provides a research foundation for the application of carbon quantum dots in antimicrobial field, and also expands the application range of carbon quantum dots in medicine field.
Subject(s)
Quantum Dots , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Carbon , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Proteomics , RatsABSTRACT
Amentoflavone, robustaflavone, 2â³,3â³-dihydro-3',3â´-biapigenin, 3',3â´-binaringenin, and delicaflavone are five major hydrophobic components in the total biflavonoids extract from Selaginella doederleinii (TBESD) that display favorable anticancer properties. The purpose of this study was to develop a new oral delivery formulation to improve the solubilities, dissolution rates, and oral bioavailabilities of the main ingredients in TBESD by the solid dispersion technique. Solid dispersions of TBESD with various hydrophilic polymers were prepared, and different technologies were applied to select the suitable carrier and method. TBESD amorphous solid dispersion (TBESD-ASD) with polyvinylpyrrolidone K-30 was successfully prepared by the solvent evaporation method. The physicochemical properties of TBESD-ASD were investigated by scanning electron microscopy, differential scanning calorimetry, and Fourier-transform infrared spectroscopy. As a result, TBESD was found to be molecularly dispersed in the amorphous carrier. The solubilities and dissolution rates of all five ingredients in the TBESD-ASD were significantly increased (nearly 100% release), compared with raw TBESD. Meanwhile, TBESD-ASD showed good preservation stability for 3 months under accelerated conditions of 40 °C and 75% relative humidity. A subsequent pharmacokinetic study in rats revealed that Cmax and AUC0-t of all five components were significantly increased by the solid dispersion preparation. An in vivo study clearly revealed that compared to raw TBESD, a significant reduction in tumor size and microvascular density occurred after oral administration of TBESD-ASD to xenograft-bearing tumor mice. Collectively, the developed TBESD-ASD with the improved solubility, dissolution rates and oral bio-availabilities of the main ingredients could be a promising chemotherapeutic agent for cancer treatment.
Subject(s)
Biflavonoids/isolation & purification , Plant Extracts/chemistry , Polymers/chemistry , Selaginellaceae/chemistry , Administration, Oral , Animals , Area Under Curve , Biflavonoids/chemistry , Biflavonoids/pharmacokinetics , Biological Availability , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Plant Extracts/pharmacokinetics , Povidone/chemistry , Rats , Rats, Sprague-Dawley , SolubilityABSTRACT
Colorectal cancer (CRC) is one of the most common malignant tumors worldwide and tends to have drug resistance. Delicaflavone (DLF), a novel anticancer agent of biflavonoid from Selaginella doederleinii Hieron, showed strong anti-CRC activities, which has not yet been reported. In this study, we investigated the effects and possible anti-CRC mechanism of DLF in vitro and in vivo. It was shown that DLF significantly inhibited the cells viability and induced G2/M phase arrest, apoptosis, the loss of mitochondrial membrane potential (Δψm), generation of ROS and increase of intracellular Ca2+ in HT29 and HCT116 cells by MTT assay, TEM, flow cytometry and inverted fluorescence microscope. Western blot and qPCR assays results further confirmed DLF induced caspase-dependent apoptosis and inhibited PI3K/AKT/mTOR and Ras/MEK/Erk signaling pathways in CRC cells. Meanwhile, DLF significantly suppressed the tumor growth via activation of Caspase-9 and Caspase-3 protein and decrease of ki67 and CD34 protein without apparent side effects in vivo. In summary, these results indicated DLF induced ROS-mediated cell cycle arrest and apoptosis through ER stress and mitochondrial pathway accompanying with the inhibition of PI3K/AKT/mTOR and Ras/MEK/Erk signaling cascade. Thus DLF could be a potential therapeutic agent for CRC.
Subject(s)
Apoptosis/drug effects , Biflavonoids/pharmacology , Colorectal Neoplasms/drug therapy , Enzymes/metabolism , MAP Kinase Signaling System/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biflavonoids/chemistry , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , HCT116 Cells , HT29 Cells , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Plant Preparations/chemistry , Plant Preparations/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Selaginellaceae/chemistry , TOR Serine-Threonine Kinases/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods , ras Proteins/metabolismABSTRACT
Ixeris sonchifolia extract injection, a Chinese medicine preparation named as Kudiezi injection (KDZI) in China, has been widely used for the treatment of cardiovascular diseases (CVDs) in recent years. Owing to the component complexity of the preparation, the study on the effect mechanism of the herbal medicine against CVDs is a big challenge. In this research, HPLC-Q-TOF-MS was used to analyze the constituents of the preparation, disclosing that the KDZI mainly consists of 10 ingredients, namely 3-caffeoylquinic acid (KDZI-1), 4-caffeoylquinic acid (KDZI-2), 5-caffeoylquinic acid (KDZI-3), apigenin-7-O-ß-d-glucuronide (KDZI-4), caffeic acid (KDZI-5), chicoric acid (KDZI-6), caftaric acid (KDZI-7), luteolin-7-O-ß-d-gentiobioside (KDZI-8), luteolin-7-O-ß-d-glucopyranoside (KDZI-9) and luteolin-7-O-ß-d-glucuronide (KDZI-10). Afterwards, target fishing and an integrated systems pharmacology approach combined with molecular docking (Sybyl 1.3 and AutoDock Vina) were adopted to predict the potential targets and pathways for the main ingredients in KDZI. As results, 39 protein targets and 9 KEGG pathways, possessing high relevance to the therapeutic effects of the ingredients of KDZI against CVDs, were screened out reasonably. The integrated pharmacology analysis suggested that KDZI could exert its therapeutic effects against CVDs possibly via multi-targets including EGFR, MAPK10, and SRC and multi-pathways referring to MAPK, focal adhesion, complement and coagulation cascades, etc. This research provides insights into understanding the comprehensive therapeutic effect and mechanism of the KDZI on CVDs.
ABSTRACT
PURPOSE: Amentoflavone, robustaflavone, 2'',3''-dihydro-3',3'''-biapigenin, 3',3'''-binaringenin and delicaflavone are five major active ingredients in the total biflavonoids extract from Selaginella doederleinii (TBESD) with favorable anticancer properties. However, the natural-derived potent antitumor agent of TBESD is undesirable due to its poor solubility. The present study was to develop and optimize a proliposomal formulation of TBESD (P-TBESD) to improve its solubility, oral bioavailability and efficacy. MATERIALS AND METHODS: P-TBESD containing a bile salt, a protective hydrophilic isomalto-oligosaccharides (IMOs) coating, were successfully prepared by thin film dispersion-sonication method. The physicochemical and pharmacokinetic properties of P-TBESD were characterized, and the antitumor effect was evaluated using the HT-29 xenograft-bearing mice models in rats. RESULTS: Compared with TBESD, the relative bioavailability of amentoflavone, robustaflavone, 2'',3''-dihydro-3',3'''-biapigenin, 3',3'''-binaringenin and delicaflavone from P-TBESD were 669%, 523%, 761%, 955% and 191%, respectively. The results of pharmacodynamics demonstrated that both TBESD and P-TBESD groups afforded antitumor effect without systemic toxicity, and the antitumor effect of P-TBESD was significantly superior to that of raw TBESD, based on the tumor growth inhibition and histopathological examination. CONCLUSION: Hence, IMOs-modified proliposomes have promising potential for TBESD solving the problem of its poor solubility and oral bioavailability, which can serve as a practical oral preparation for TBESD in the future cancer therapy.
Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Biflavonoids/administration & dosage , Liposomes/administration & dosage , Plant Extracts/administration & dosage , Selaginellaceae/chemistry , Administration, Oral , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Biflavonoids/pharmacokinetics , Biflavonoids/pharmacology , Bile Acids and Salts/chemistry , Biological Availability , HT29 Cells , Humans , Liposomes/chemistry , Liposomes/pharmacokinetics , Male , Mice , Mice, Inbred BALB C , Oligosaccharides/chemistry , Plant Extracts/chemistry , Rats, Sprague-Dawley , Solubility , Xenograft Model Antitumor AssaysABSTRACT
The author describe a method for preparation of green fluorescent nitrogen-doped carbon dots (N-CDs) through hydrothermal treatment of a mixture of lotus leaf juice and ethylenediamine (EDA). The N-CDs have uniform size, good dispersibility and water solubility. Under 316 and 366 nm photoexcitation, they show dual fluorescence with emission peaks at 415 and 509 nm, respectively. They are positively charge and display low cytotoxicity. This makes them an excellent choice for fluorometric assays and for bioimaging. A ratiometric assay was developed for the determination of the activity of acid phosphatase (ACP). It is based on the aggregation- induced quenching (AIQ) of the fluorescence of the N-CDs by sodium hexametaphosphate (NaPO3)6. Enzymatic hydrolysis of (NaPO3)6 by ACP leads to the disintegration of (NaPO3)6 and to the restoration of fluorescence. The measurement of the ratio of fluorescence at two wavelengths (415 and 509 nm), background interference and fluctuating signals can be widely eliminated. The method works in the 1-50 U·L-1 ACP activity range and has a detection limit of 0.43 U·L-1. It was successfully applied (a) to the determination of ACP in spiked serum samples, (b) to ACP inhibitor screening, and (c) to imaging of ACP in HePG2 cells. Graphical abstract Schematic presentation of the synthesis of nitrogen-doped carbon dots (N-CDs), and their application to the ratiometric fluorometric determination of acid phosphatase (ACP) based on the aggregation-induced quenching and enzymatic hydrolysis.
Subject(s)
Acid Phosphatase , Carbon/chemistry , Fluorescent Dyes/chemistry , Nitrogen/chemistry , Acid Phosphatase/analysis , Acid Phosphatase/antagonists & inhibitors , Acid Phosphatase/blood , Acid Phosphatase/chemistry , Green Chemistry Technology , Hep G2 Cells , Humans , Lotus , Phosphates/chemistry , Plant Extracts/chemistry , Plant LeavesABSTRACT
Purpose: Discovering new antimyocardial ischemia drug candidates that are highly efficient, have low toxicity, and originate from natural products is a popular trend for new cardiovascular drug development at present. The ethanol extract of Livistona chinensis leaves showed a favorable antioxidant activity in our preliminary screening test. This study aims to screen out antioxidants from the herb leaves further and evaluate their efficacy in acute myocardial ischemia treatment at the cellular level. Materials and methods: Guided with online 1, 1-diphenyl-2-picrylhydrazyl (DPPH)-high-performance liquid chromatography (HPLC) screening, antioxidants were first separated and isolated from the ethanol extract of L. chinensis leaves by preparative-HPLC. Subsequently, offline DPPH approach was used to validate the free radical scavenging activity of the components. Ultimately, the resulting antioxidants were evaluated against the hypoxia/reoxygenation (H/R)-, H2O2-, or adriamycin (ADM)-induced injury in H9c2 cells to verify their cardioprotective effects in vitro. Results: Five antioxidant ingredients, namely, orientin, isoorientin, vitexin, isovitexin, and tricin, were quickly distinguished and isolated from L. chinensis leaves. The IC50 values of these ingredients were further examined by offline DPPH assay, as follows: 15.51±0.22, 6.64±0.38, 11.86±0.24, 8.89±0.66, and 31.86±0.24 µg/mL, respectively. Out of these ingredients, isoorientin showed the strongest antioxidation, which was equivalent to that of the positive control drug (vitamin C, IC50: 6.99±0.62 µg/mL). Using H/R-, H2O2-, and ADM-induced H9c2 cell injury models, the five ingredients had different extents of cardioprotective effects in vitro. In particular, isoorientin showed the strongest protection. All the five ingredients also showed insignificant cytotoxic effect to normal H9c2 cells. Conclusion: The ethanol extract of L. chinensis leaves contained five antioxidants with low cardiac cytotoxicity. Isoorientin possessed the strongest antioxidation, which can predominantly account for the myocardial protection effects within the extract.
Subject(s)
Antioxidants/pharmacology , Doxorubicin/antagonists & inhibitors , Hydrogen Peroxide/antagonists & inhibitors , Hypoxia/drug therapy , Plant Extracts/pharmacology , Protective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Molecular Conformation , Oxygen/metabolism , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Protective Agents/chemistry , Protective Agents/isolation & purification , Structure-Activity RelationshipABSTRACT
BACKGROUND: Cervical cancer (CCa) represents the fourth most common cause of cancer-related death in women worldwide. CCa therapy is still a major clinical challenge worldwide. Finding and developing new anti-CCa chemotherapeutic drugs is a very significant issue. Delicaflavone is a rare biflavonoid from Selaginella doederleinii Hieron, which has shown strong anti-cancer activities in our preliminary screening. PURPOSE: The present study aimed to investigate the apoptotic effect and mechanism of delicaflavone against CCa. METHODS: In this study, the effect and potential mechanism of delicaflavone against CCa were investigated in vitro and in vivo by MTT assay, TEM, flow cytometry, western blot assay, qPCR assay, immunofluorescence assay and the mouse xenograft tumor model. RESULTS: It was confirmed that delicaflavone inhibited the proliferation of human CCa HeLa cells, and induced morphological changes, G2/M phase arrest and apoptosis in a dose- and time-dependent manner. HeLa cells treated with delicaflavone showed the loss of mitochondrial membrane potential, release of Cytochrome c, activation of caspases, alteration of Bax/Bcl-2 balance, and the inhibition of MAPK signaling cascades. Furthermore, delicaflavone significantly decreased tumor growth in a dose-dependent manner without apparent side effects in a xenograft tumor model of HeLa cells. Immunohistochemistry analysis confirmed the up-regulation of Caspase-9, Caspase-3, Bax protein and down-regulation of Bcl-2 protein in the xenografts tumors, which was consistent with the results in vitro. CONCLUSION: The results of the current study show that apoptosis is induced by the mitochondrial pathway accompanying with G2/M cycle arrest and inhibition of MAPK signaling cascades in human CCa HeLa cells, which can be used as a promising therapeutic drug for CCa.
Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biflavonoids/pharmacology , MAP Kinase Signaling System/drug effects , Selaginellaceae/chemistry , Uterine Cervical Neoplasms/drug therapy , Animals , Caspases/metabolism , Cell Division/drug effects , Dose-Response Relationship, Drug , Female , G2 Phase/drug effects , HeLa Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C , Mice, Nude , Mitochondria/drug effects , Xenograft Model Antitumor AssaysABSTRACT
Antimicrobial resistance is becoming more and more serious and has become a potential hazard to human life and health. The fabrication of some new antibacterial substances against resistant bacteria is demanded. With the wide application and research of carbon nanomaterials, nitrogen-doped carbon quantum dots (NCQDs) were synthesized by a one-step chemical route herein. The particle size of NCQDs in the range of 2-5 nm were characterized by transmission electron microscopy (TEM), atomic force microscopy, and dynamic light scattering. The functional groups and optical properties of NCQDs were investigated by UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Disk-diffusion tests showed that the NCQDs had specific antibacterial activity against Staphylococcus. TEM showed that the NCQDs could destroy the cell structure of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) but could not combat Escherichia coli. The antibacterial mechanism may be that positively charged NCQDs firstly interacted with the negatively charged bacteria, and then specifically anchored on some specific sites on the surface of Staphylococcus. The NCQDs were applied to treat wounds infected with MRSA and showed the same therapeutic effect as vancomycin. Photomicrographs of hematoxylin-eosin-stained histological sections showed that the NCQDs at concentrations effectively killing S. aureus and MRSA caused negligible toxicity to the main rat organs, including heart, liver, spleen, lung, and kidney. Thus, the NCQDs can be developed as a promising antibacterial agent for Staphylococcus. And the NCQDs are likely to treat local infections caused by Staphylococcus clinically, especially S. aureus and MRSA.
Subject(s)
Anti-Bacterial Agents/therapeutic use , Carbon/chemistry , Nitrogen/chemistry , Quantum Dots/chemistry , Staphylococcus aureus/drug effects , Wounds and Injuries/drug therapy , Wounds and Injuries/microbiology , Animals , Anti-Bacterial Agents/pharmacology , C-Reactive Protein/metabolism , Escherichia coli/drug effects , HeLa Cells , Humans , Leukocyte Count , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Photoelectron Spectroscopy , Quantum Dots/ultrastructure , Rats, Sprague-Dawley , Toxicity Tests , Wound Healing/drug effects , Wounds and Injuries/bloodABSTRACT
This study has developed a reliable and precise high performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of five phenolic acids and four flavonoid glycosides in rat plasma after a single intravenous administration of Kudiezi injection (KI). Chromatographic separation was carried out on an Ultimate®XB-C18 column (4.6 × 100 mm, 3.5 µm) using a gradient elution program with a mobile phase consisting of water containing 0.5% acetic acid and acetonitrile at a flow rate of 0.6 mL/min. Detection was performed on a triple-quadrupole tandem mass spectrometry using multiple reaction monitoring in negative electrospray ionization mode. The calibration curves of all analytes showed good linearity (R² > 0.990). The results of selectivity, intra-day and inter-day precisions, extraction recoveries, matrix effects and stability were satisfactory. Pharmacokinetic parameters showed that luteolin-7-O-ß-d-gentiobioside, luteolin-7-O-ß-d-glucuronide, luteolin-7-O-ß-d-glucoside and apigenin-7-O-ß-d-glucuronide were eliminated quickly (0.07 h < t1/2 < 0.66 h), whereas 5-caffeoylquinic acid, caftaric acid, chlorogenic acid, 4-caffeoylquinic acid and caffeic acid were eliminated relatively slowly (2.22 h < t1/2 < 6.09 h) in rat blood. The pharmacokinetic results would be valuable to identify bioactive constituents, elucidate mechanisms of pharmacological actions or adverse drug reactions and guide the rational clinical use of KI.