Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-26454343

ABSTRACT

Gypenoside LVI and gypenoside XLVI are the major bioactive dammarane saponins from Gynostemma pentaphyllum. Gypenoside LVI, gypenoside XLVI, and their metabolite 2α-OH-protopanaxadiol (2α-OH-PPD) possess potent non-small cell lung carcinoma A549 cell inhibitory activity. A sensitive liquid chromatography tandem mass spectrometry method was developed and validated to study the pharmacokinetics of gypenoside LVI and XLVI, 2α-OH-PPD, metabolite 1 (M1), and metabolite 2 (M2) after administration of gypenosides or 2α-OH-PPD. Plasma samples from rats were protein precipitated with methanol. Analytes were detected by triple quadrupole MS/MS with an electrospray ionization source in the positive multiple reaction monitoring mode. The transition m/z 441.4→109.2 was selected to quantify gypenoside LVI and XLVI, and 2α-OH-PPD, because of the extensive conversion of the gypenosides to aglycone in the ionization source. M1 and M2 are isomers that shared the transition m/z 493.4→143.1. To avoid interference, the baseline separation of each analyte was performed on a SunFire C18 column with a gradient of acetonitrile (0.1% formic acid, v/v) and water (0.1% formic acid, v/v). The chromatographic run time was 10min. The linearity was validated over a plasma concentration range from 2.00 to 2000ng/mL for M1 and M2, and from 10.0 to 2000 for gypenosides LVI and XLVI, and 2α-OH-protopanaxadiol. The lower limits of quantification were 10.0, 10.0, 10.0, 2.00, and 2.00ng/mL for gypenoside LVI, gypenoside XLVI, 2α-OH-PPD, M1, and M2, respectively, with acceptable intra-/inter-day precision and accuracy. The extraction recovery rates were >86.9% for each compound. No apparent matrix effect or instability was observed during each step of the bioanalysis. After full validation, this method was proved to be simple, fast, and efficient in analyzing large batches of plasma samples for the analytes.


Subject(s)
Chromatography, High Pressure Liquid/methods , Sapogenins/blood , Tandem Mass Spectrometry/methods , Animals , Gynostemma/chemistry , Gynostemma/metabolism , Limit of Detection , Linear Models , Male , Plant Extracts/blood , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacokinetics , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sapogenins/chemistry , Sapogenins/metabolism , Sapogenins/pharmacokinetics
2.
Anal Bioanal Chem ; 406(3): 841-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24337185

ABSTRACT

Magnoflorine, an aporphine alkaloid in Cortex phellodendri, is increasingly attracting research attention because of its antidiabetic effects. However, at present, little information on its pharmacokinetics (PK) in vivo is available. In this study, a sensitive, rapid, and selective method was developed to determine the magnoflorine content in rat plasma using liquid chromatography-tandem mass spectrometry. Following liquid-liquid extraction, the calibration curve showed good linearity within the concentration range of 2.93 to 1,500 ng ml(-1). The intra- and inter-day precisions were all below 7.8 %, and the accuracy ranged from 94.9 to 103.4 %. The method was successfully applied in investigating the PK of magnoflorine in rats. The compound had low bioavailability, a high absorption rate, and a high elimination rate. However, area under the curve, T 1/2, and MRT increased approximately twofold when the same dosage of the compound was administered in a C. phellodendri decoction (20.8 g kg(-1)). Moreover, T max was prolonged from 0.3 to 3.33 h. Furthermore, a comparison of coadministration of the mixture group, magnoflorine (40 mg kg(-1)) and berberine (696.4 mg kg(-1)), with the C. phellodendri decoction group, revealed that no statistical difference (P > 0.05) was found in the parameter AUC, and certain similar changes in the PK trend to the herbal medicine group were also observed. These results suggested that oral administration of the herbal medicine decreased the absorption and elimination rates of magnoflorine and increased its bioavailability. Berberine played a significant role in interacting with magnoflorine and in affecting the PK profiles of magnoflorine in the C. phellodendri decoction group.


Subject(s)
Aporphines/metabolism , Aporphines/pharmacokinetics , Chromatography, Liquid , Phellodendron/chemistry , Tandem Mass Spectrometry , Administration, Oral , Animals , Aporphines/blood , Drug Stability , Limit of Detection , Male , Molecular Structure , Rats , Rats, Wistar , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL