Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(31): e2302809120, 2023 08.
Article in English | MEDLINE | ID: mdl-37467285

ABSTRACT

Hypothalamic inflammation reduces appetite and body weight during inflammatory diseases, while promoting weight gain when induced by high-fat diet (HFD). How hypothalamic inflammation can induce opposite energy balance outcomes remains unclear. We found that prostaglandin E2 (PGE2), a key hypothalamic inflammatory mediator of sickness, also mediates diet-induced obesity (DIO) by activating appetite-promoting melanin-concentrating hormone (MCH) neurons in the hypothalamus in rats and mice. The effect of PGE2 on MCH neurons is excitatory at low concentrations while inhibitory at high concentrations, indicating that these neurons can bidirectionally respond to varying levels of inflammation. During prolonged HFD, endogenous PGE2 depolarizes MCH neurons through an EP2 receptor-mediated inhibition of the electrogenic Na+/K+-ATPase. Disrupting this mechanism by genetic deletion of EP2 receptors on MCH neurons is protective against DIO and liver steatosis in male and female mice. Thus, an inflammatory mediator can directly stimulate appetite-promoting neurons to exacerbate DIO and fatty liver.


Subject(s)
Fatty Liver , Obesity , Mice , Rats , Male , Female , Animals , Obesity/genetics , Melanins/genetics , Hypothalamus , Inflammation , Diet, High-Fat/adverse effects , Neurons , Inflammation Mediators , Prostaglandins
2.
Neuroscience ; 491: 156-165, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35405302

ABSTRACT

Orexin and melanin-concentrating hormone (MCH) neurons constitute the energy balance circuitry that coordinates the fasting response. Orexin neurons mediate food foraging at the expense of energy storage, while MCH neurons promote energy storage by reducing energy expenditure and increasing food intake. It is unknown if these cell groups undergo plastic changes as hunger and metabolic changes escalate over time during fasting. To address this, we performed in vitro electrophysiological recording on orexin and MCH neurons in the lateral hypothalamus and perifornical area from rats fasted for 12 or 24 h or fed ad-libitum. Orexin neurons showed a transient decrease in presynaptic glutamate release at 12 h. This turned to an increase at 24 h of fasting, while membrane potential depolarized and AMPA receptor conductance increased. In contrast, MCH neurons were transiently depolarized at 12 h fasting along with increased presynaptic glutamate release. These changes reversed at 24 h, while the number of AMPA receptors decreased. Our results indicate that MCH neurons are preferentially activated during the early phase of fasting (12 h), which would protect against weight loss. With a longer fast, orexin neurons become activated, which would promote arousal and exploratory activity required for foraging behaviors. This alternating activation of these cell groups may reflect a dynamic balance of energy conservation and foraging behaviors to optimize energy balance during ongoing fasting.


Subject(s)
Fasting , Hypothalamic Hormones , Animals , Glutamic Acid/metabolism , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Melanins/metabolism , Neurons/metabolism , Orexins/metabolism , Pituitary Hormones/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL