Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Plant J ; 100(3): 487-504, 2019 11.
Article in English | MEDLINE | ID: mdl-31278825

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme required for all living organisms. In eukaryotic cells, the final step of NAD+ biosynthesis is exclusively cytosolic. Hence, NAD+ must be imported into organelles to support their metabolic functions. Three NAD+ transporters belonging to the mitochondrial carrier family (MCF) have been biochemically characterized in plants. AtNDT1 (At2g47490), focus of the current study, AtNDT2 (At1g25380), targeted to the inner mitochondrial membrane, and AtPXN (At2g39970), located in the peroxisomal membrane. Although AtNDT1 was presumed to reside in the chloroplast membrane, subcellular localization experiments with green fluorescent protein (GFP) fusions revealed that AtNDT1 locates exclusively in the mitochondrial membrane in stably transformed Arabidopsis plants. To understand the biological function of AtNDT1 in Arabidopsis, three transgenic lines containing an antisense construct of AtNDT1 under the control of the 35S promoter alongside a T-DNA insertional line were evaluated. Plants with reduced AtNDT1 expression displayed lower pollen viability, silique length, and higher rate of seed abortion. Furthermore, these plants also exhibited an increased leaf number and leaf area concomitant with higher photosynthetic rates and higher levels of sucrose and starch. Therefore, lower expression of AtNDT1 was associated with enhanced vegetative growth but severe impairment of the reproductive stage. These results are discussed in the context of the mitochondrial localization of AtNDT1 and its important role in the cellular NAD+ homeostasis for both metabolic and developmental processes in plants.


Subject(s)
Antiporters/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , NAD/metabolism , Antiporters/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Biological Transport , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chloroplasts/metabolism , Cytosol/metabolism , Green Fluorescent Proteins , Homeostasis , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutagenesis, Insertional , Nucleotide Transport Proteins , Peroxisomes/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Starch/metabolism
2.
J Exp Bot ; 69(22): 5355-5371, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30169823

ABSTRACT

In eudicotyledons, accumulation of trihydroxycinnamoyl spermidine that is restricted to the pollen wall constitutes an evolutionary conserved trait. However, the role of this compound, which is synthetized by the BAHD enzyme spermidine hydroxycinnamoyl transferase (SHT), is still a matter of debate. Here, we show that this particular phenolamide is replaced by tetrahydroxycinnamoyl spermine in the pollen coat of the Asteraceae. Phylogenetic analyses combined with quantitative RT-PCR experiments allowed the identification of two homologous genes from Cichorium intybus (chicory) putatively involved in its metabolism. In vitro biochemical characterization of the two enzymes, named CiSHT1 and CiSHT2, confirmed the capability of recombinant proteins to synthesize spermine as well as spermidine derivatives. The wild-type metabolic phenotype was partially restored in an Arabidopsis sht mutant expressing CiSHT2. Strikingly, the transgenic plants also accumulated spermine derivatives that were absent in the wild-type. Overexpression of CiSHT2 in chicory hairy roots led to the accumulation of spermine derivatives, confirming its in vivo function. Complementary sequence analyses revealed the presence of an amino acid motif typical of the SHTs among the BAHD enzyme family. Our results highlight a recent neofunctionalization among the SHTs that has promoted the emergence of new phenolamides in the Asteraceae, which could potentially have contributed to the evolutionary success of this family.


Subject(s)
Arabidopsis/genetics , Cichorium intybus/genetics , Plant Proteins/genetics , Pollen/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Cichorium intybus/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment , Spermine/metabolism
3.
Methods Mol Biol ; 1595: 291-304, 2017.
Article in English | MEDLINE | ID: mdl-28409472

ABSTRACT

Peroxisomal ß-oxidation in plants is essential for mobilization of storage oil in seed-oil storing plants, such as Arabidopsis thaliana. In plants, degradation of fatty acids occurs exclusively in peroxisomes via ß-oxidation, driving seedling growth and development upon germination. Thus, the determination of storage oil breakdown rates is a useful approach to investigate defects in peroxisomal ß-oxidation. Here we describe an acid catalyzed derivatization process of fatty acids representing a fast and efficient procedure to generate high yields of fatty acid methyl esters (FAMEs). The subsequent analysis by gas chromatography coupled to mass spectrometry (GC-MS) allows the quantification of total fatty acid content. The results provide detailed information of the complete storage oil breakdown process via peroxisomal ß-oxidation during seedling growth.


Subject(s)
Arabidopsis/metabolism , Oxidation-Reduction , Peroxisomes/metabolism , Plant Oils/metabolism , Seedlings/metabolism , Fatty Acids/metabolism , Gas Chromatography-Mass Spectrometry , Germination , Plant Extracts , Seeds/growth & development , Seeds/metabolism
4.
Plant J ; 69(1): 1-13, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21895810

ABSTRACT

The existence of a transport protein that imports cytosolic NAD(+) into peroxisomes has been controversially discussed for decades. Nevertheless, the biosynthesis of NAD(+) in the cytosol necessitates the import of NAD(+) into peroxisomes for numerous reduction/oxidation (redox) reactions. However, a gene encoding such a transport system has not yet been identified in any eukaryotic organism. Here, we describe the peroxisomal NAD(+) carrier in Arabidopsis. Our candidate gene At2g39970 encodes for a member of the mitochondrial carrier family. We confirmed its peroxisomal localization using fluorescence microscopy. For a long time At2g39970 was assumed to represent the peroxisomal ATP transporter. In this study, we could show that the recombinant protein mediated the transport of NAD(+) . Hence, At2g39970 was named PXN for peroxisomal NAD(+) carrier. The loss of PXN in Arabidopsis causes defects in NAD(+) -dependent ß-oxidation during seedling establishment. The breakdown of fatty acid released from storage oil was delayed, which led to the retention of oil bodies in pxn mutant seedlings. Based on our results, we propose that PXN delivers NAD(+) for optimal fatty acid degradation during storage oil mobilization.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Fatty Acids/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , NAD/metabolism , Peroxisomes/metabolism , Plant Oils/metabolism , 2,4-Dichlorophenoxyacetic Acid/analogs & derivatives , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Adenine Nucleotides/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Fluorescence , Mitochondrial Membrane Transport Proteins/genetics , Mutation , Oxidation-Reduction , Plants, Genetically Modified , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Sucrose/metabolism
5.
Plant Mol Biol ; 55(1): 17-32, 2004 May.
Article in English | MEDLINE | ID: mdl-15604662

ABSTRACT

When we think of extremophiles, organisms adapted to extreme environments, prokaryotes come to mind first. However, the unicellular red micro-alga Galdieria sulphuraria (Cyanidiales) is a eukaryote that can represent up to 90% of the biomass in extreme habitats such as hot sulfur springs with pH values of 0-4 and temperatures of up to 56 degrees C. This red alga thrives autotrophically as well as heterotrophically on more than 50 different carbon sources, including a number of rare sugars and sugar alcohols. This biochemical versatility suggests a large repertoire of metabolic enzymes, rivaled by few organisms and a potentially rich source of thermo-stable enzymes for biotechnology. The temperatures under which this organism carries out photosynthesis are at the high end of the range for this process, making G. sulphuraria a valuable model for physical studies on the photosynthetic apparatus. In addition, the gene sequences of this living fossil reveal much about the evolution of modern eukaryotes. Finally, the alga tolerates high concentrations of toxic metal ions such as cadmium, mercury, aluminum, and nickel, suggesting potential application in bioremediation. To begin to explore the unique biology of G. sulphuraria , 5270 expressed sequence tags from two different cDNA libraries have been sequenced and annotated. Particular emphasis has been placed on the reconstruction of metabolic pathways present in this organism. For example, we provide evidence for (i) a complete pathway for lipid A biosynthesis; (ii) export of triose-phosphates from rhodoplasts; (iii) and absence of eukaryotic hexokinases. Sequence data and additional information are available at http://genomics.msu.edu/galdieria.


Subject(s)
Carbon/metabolism , Expressed Sequence Tags , Lipid A/biosynthesis , Plastids/metabolism , Rhodophyta/genetics , Algal Proteins/genetics , Amino Acid Sequence , Base Sequence , Biological Transport , DNA, Complementary/chemistry , DNA, Complementary/genetics , Energy Metabolism/genetics , Fatty Acids/metabolism , Gene Library , Hexokinase/genetics , Hydrogen-Ion Concentration , Lipid Metabolism , Molecular Sequence Data , Monosaccharide Transport Proteins/genetics , Oxygen Consumption , Phosphate Transport Proteins/genetics , Photosynthesis/genetics , Phylogeny , Rhodophyta/metabolism , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL