Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Adv Redox Res ; 102024 Apr.
Article in English | MEDLINE | ID: mdl-38562523

ABSTRACT

Individuals with a history of mild traumatic brain injury (mTBI) are at an increased risk for neurodegenerative disease, suggesting that intrinsic neuroprotective mechanisms, such as the endogenous antioxidant reservoir, may be depleted long-term after mTBI. Here, we retrospectively analyzed symptoms and blood antioxidants in patients with a history of mTBI who presented to Resilience Code, a sports medicine clinic in Colorado. Significant decreases in alpha-tocopherol, selenium, linoleic acid, taurine, docosahexaenoic acid, and total omega-3 were measured in the total mTBI population versus controls. Male mTBI patients showed depletion of a larger array of antioxidants than females. Patients with a history of mTBI also reported significantly worsened emotional, energy, head, and cognitive symptoms, with males displaying more extensive symptomology. Multiple or chronic mTBI patients had worsened symptoms than single or acute/subchronic mTBI patients, respectively. Finally, male mTBI patients with the largest reductions in polyunsaturated fatty acids (PUFAs) displayed worse symptomology than male mTBI patients with less depletion of this antioxidant reservoir. These results demonstrate that antioxidant depletion persists in patients with a history of mTBI and these deficits are sex-specific and associated with worsened symptomology. Furthermore, supplementation with specific antioxidants, like PUFAs, may diminish symptom severity in patients suffering from chronic effects of mTBI.

2.
Brain Res ; 1808: 148338, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36966959

ABSTRACT

Successive traumatic brain injuries (TBIs) exacerbate neuroinflammation and oxidative stress. No therapeutics exist for populations at high risk of repetitive mild TBIs (rmTBIs). We explored the preventative therapeutic effects of Immunocal®, a cysteine-rich whey protein supplement and glutathione (GSH) precursor, following rmTBI and repetitive mild-moderate TBI (rmmTBI). Populations that suffer rmTBIs largely go undiagnosed and untreated; therefore, we first examined the potential therapeutic effect of Immunocal® long-term following rmTBI. Mice were treated with Immunocal® prior to, during, and following rmTBI induced by controlled cortical impact until analysis at 2 weeks, 2 months, and 6 months following the last rmTBI. Astrogliosis and microgliosis were measured in cortex at each time point and edema and macrophage infiltration by MRI were analyzed at 2 months post-rmTBI. Immunocal® significantly reduced astrogliosis at 2 weeks and 2 months post-rmTBI. Macrophage activation was observed at 2 months post-rmTBI but Immunocal® had no significant effect on this endpoint. We did not observe significant microgliosis or edema after rmTBI. The dosing regimen was repeated in mice subjected to rmmTBI; however, using this experimental paradigm, we examined the preventative therapeutic effects of Immunocal® at a much earlier timepoint because populations that suffer more severe rmmTBIs are more likely to receive acute diagnosis and treatment. Increases in astrogliosis, microgliosis, and serum neurofilament light (NfL), as well as reductions in the GSH:GSSG ratio, were observed 72 h post-rmmTBI. Immunocal® only significantly reduced microgliosis after rmmTBI. In summary, we report that astrogliosis persists for 2 months post-rmTBI and that inflammation, neuronal damage, and altered redox homeostasis present acutely following rmmTBI. Immunocal® significantly limited gliosis in these models; however, its neuroprotection was partially overwhelmed by repetitive injury. Treatments that modulate distinct aspects of TBI pathophysiology, used in combination with GSH precursors like Immunocal®, may show more protection in these repetitive TBI models.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Mice , Animals , Gliosis , Brain Injuries, Traumatic/complications , Glutathione/metabolism , Dietary Supplements , Disease Models, Animal
3.
Molecules ; 23(11)2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30428519

ABSTRACT

Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease, and Parkinson's disease, are characterized by the progressive loss of neurons in specific regions of the brain and/or spinal cord. Neuronal cell loss typically occurs by either apoptotic or necrotic mechanisms. Oxidative stress and nitrosative stress, along with excitotoxicity and caspase activation, have all been implicated as major underlying causes of neuronal cell death. Diverse nutraceuticals (bioactive compounds found in common foods) have been shown to have neuroprotective effects in a variety of in vitro and in vivo disease models. In the current study, we compared the neuroprotective effects of two polyphenolic compounds, rosmarinic acid and carnosic acid, which are both found at substantial concentrations in the herb rosemary. The capacity of these compounds to rescue primary cultures of rat cerebellar granule neurons (CGNs) from a variety of stressors was investigated. Both polyphenols significantly reduced CGN death induced by the nitric oxide donor, sodium nitroprusside (nitrosative stress). Rosmarinic acid uniquely protected CGNs from glutamate-induced excitotoxicity, while only carnosic acid rescued CGNs from caspase-dependent apoptosis induced by removal of depolarizing extracellular potassium (5K apoptotic condition). Finally, we found that carnosic acid protects CGNs from 5K-induced apoptosis by activating a phosphatidylinositol 3-kinase (PI3K) pro-survival pathway. The shared and unique neuroprotective effects of these two compounds against diverse modes of neuronal cell death suggest that future preclinical studies should explore the potential complementary effects of these rosemary polyphenols on neurodegenerative disease progression.


Subject(s)
Abietanes/pharmacology , Cerebellum/cytology , Cinnamates/pharmacology , Depsides/pharmacology , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Abietanes/chemistry , Antioxidants/pharmacology , Apoptosis/drug effects , Caspases/metabolism , Cell Survival/drug effects , Cells, Cultured , Cinnamates/chemistry , Depsides/chemistry , Glutamic Acid/metabolism , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Rosmarinic Acid
4.
Free Radic Biol Med ; 124: 328-341, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29940352

ABSTRACT

Traumatic brain injury (TBI) is a major public health problem estimated to affect nearly 1.7 million people in the United States annually. Due to the often debilitating effects of TBI, novel preventative agents are highly desirable for at risk populations. Here, we tested a whey protein supplement, Immunocal®, for its potential to enhance resilience to TBI. Immunocal® is a non-denatured whey protein preparation which has been shown to act as a cysteine delivery system to increase levels of the essential antioxidant glutathione (GSH). Twice daily oral supplementation of CD1 mice with Immunocal® for 28 days prior to receiving a moderate TBI prevented an ~ 25% reduction in brain GSH/GSSG observed in untreated TBI mice. Immunocal® had no significant effect on the primary mechanical injury induced by TBI, as assessed by MRI, changes in Tau phosphorylation, and righting reflex time or apnea. However, pre-injury supplementation with Immunocal® resulted in statistically significant improvements in motor function (beam walk and rotarod) and cognitive function (Barnes maze). We also observed a significant preservation of corpus callosum width (axonal myelination), a significant decrease in degenerating neurons, a reduction in Iba1 (microglial marker), decreased lipid peroxidation, and preservation of brain-derived neurotrophic factor (BDNF) in the brains of Immunocal®-pretreated mice compared to untreated TBI mice. Taken together, these data indicate that pre-injury supplementation with Immunocal® significantly enhances the resilience to TBI induced by a moderate closed head injury in mice. We conclude that Immunocal® may hold significant promise as a preventative agent for TBI, particularly in certain high risk populations such as athletes and military personnel.


Subject(s)
Brain Injuries, Traumatic/pathology , Brain/pathology , Dietary Supplements , Neuroprotective Agents/pharmacology , Whey Proteins/pharmacology , Animals , Brain/metabolism , Brain Injuries, Traumatic/metabolism , Cysteine , Disease Models, Animal , Glutathione/metabolism , Male , Mice , Recovery of Function
5.
Nutr Neurosci ; 21(6): 414-426, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28276271

ABSTRACT

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease resulting from the death of motor neurons in the brain, brain stem, and spinal cord. Several processes such as oxidative stress, neuroinflammation, and neuronal apoptosis, contribute to disease progression. Anthocyanins are flavonoid compounds derived from fruits and vegetables that possess antioxidant, anti-inflammatory, and anti-apoptotic abilities. Thus, these unique compounds may provide therapeutic benefit for the treatment of ALS. METHODS: We used the G93A mutant human SOD1 (hSOD1G93A) mouse model of ALS to assess the effects of an anthocyanin-enriched extract from strawberries (SAE) on disease onset and progression. Mice were administered SAE orally beginning at 60 days of age until end-stage such that mice received 2 mg/kg/day of the extract's primary anthocyanin constituent. Clinical indices of disease were assessed until mice were sacrificed at end-stage. Histopathological indices of disease progression were also evaluated at 105 days of age. RESULTS: hSOD1G93A mice supplemented with SAE experienced a marked (∼17 day) delay in disease onset and a statistically significant (∼11 day) extension in survival in comparison to their untreated mutant counterparts. Additionally, SAE-treated hSOD1G93A mice displayed significantly preserved grip strength throughout disease progression. Histopathological analysis demonstrated that SAE supplementation significantly reduced astrogliosis in spinal cord, and preserved neuromuscular junctions (NMJs) in gastrocnemius muscle. DISCUSSION: These data are the first to demonstrate that anthocyanins have significant potential as therapeutic agents in a preclinical model of ALS due to their ability to reduce astrogliosis in spinal cord and preserve NMJ integrity and muscle function. Therefore, further study of these compounds is warranted in additional preclinical models of ALS and other neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Anthocyanins/pharmacology , Fragaria/chemistry , Plant Extracts/pharmacology , Amyotrophic Lateral Sclerosis/prevention & control , Animals , Body Weight , Disease Models, Animal , Disease Progression , Female , Gliosis/drug therapy , Gliosis/prevention & control , Immunohistochemistry , Male , Mice , Mice, Transgenic , Motor Neurons/drug effects , Motor Neurons/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
6.
Oxid Med Cell Longev ; 2017: 3103272, 2017.
Article in English | MEDLINE | ID: mdl-28894506

ABSTRACT

Oxidative stress is a principal mechanism underlying the pathophysiology of neurodegeneration. Therefore, nutritional enhancement of endogenous antioxidant defenses may represent a viable treatment option. We investigated the neuroprotective properties of a unique whey protein supplement (Immunocal®) that provides an essential precursor (cystine) for synthesis of the endogenous antioxidant, glutathione (GSH). Primary cultures of rat cerebellar granule neurons (CGNs), NSC34 motor neuronal cells, or HT22 hippocampal cells were preincubated in medium containing Immunocal and then subsequently treated with agents known to induce oxidative stress. Immunocal protected CGNs against neurotoxicity induced by the Bcl-2 inhibitor, HA14-1, the nitric oxide donor, sodium nitroprusside, CuCl2, and AlCl3. Immunocal also significantly reduced NSC34 cell death due to either H2O2 or glutamate and mitigated toxicity in HT22 cells overexpressing ß-amyloid1-42. The neuroprotective effects of Immunocal were blocked by inhibition of γ-glutamyl-cysteine ligase, demonstrating dependence on de novo GSH synthesis. These findings indicate that sustaining GSH with Immunocal significantly protects neurons against diverse inducers of oxidative stress. Thus, Immunocal is a nutritional supplement worthy of testing in preclinical animal models of neurodegeneration and in future clinical trials of patients afflicted by these diseases.


Subject(s)
Cystine/metabolism , Whey/chemistry , Animals , Glutathione/metabolism , Neuroprotection/drug effects , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley
7.
Free Radic Biol Med ; 103: 23-34, 2017 02.
Article in English | MEDLINE | ID: mdl-27986528

ABSTRACT

Oxidative and nitrosative stress are major factors in neuronal cell death underlying neurodegenerative disease. Thus, supplementation of antioxidant defenses may be an effective therapeutic strategy for diseases such as amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. In this regard, treatment with nutraceutical antioxidants has garnered increasing attention; however, the differential neuroprotective effects of structurally similar nutraceuticals, which may affect their suitability as therapeutic agents, has not been directly examined. In this study we compare the ability of two anthocyanins, callistephin (pelargonidin-3-O-glucoside) and kuromanin (cyanidin-3-O-glucoside) to protect cerebellar granule neurons from damage induced by either oxidative or nitrosative stress. These anthocyanins differ by the presence of a single hydroxyl group on the B-ring of kuromanin, forming a catechol moiety. While both compounds protected neurons from oxidative stress induced by glutamate excitotoxicity, a stark contrast was observed under conditions of nitrosative stress. Only kuromanin displayed the capacity to defend neurons from nitric oxide (NO)-induced apoptosis. This protective effect was blocked by addition of Cu, Zn-superoxide dismutase, indicating that the neuroprotective mechanism is superoxide dependent. Based on these observations, we suggest a unique mechanism by which slight structural variances, specifically the absence or presence of a catechol moiety, lend kuromanin the unique ability to generate superoxide, which acts as a scavenger of NO. These findings indicate that kuromanin and compounds that share similar chemical characteristics may be more effective therapeutic agents for treating neurodegenerative diseases than callistephin and related (non-catechol) compounds.


Subject(s)
Anthocyanins/pharmacology , Glucosides/pharmacology , Neurons/physiology , Neuroprotective Agents/pharmacology , Nitrosative Stress , Animals , Cells, Cultured , Drug Evaluation, Preclinical , Fragaria/chemistry , Glutamic Acid/pharmacology , Neurons/drug effects , Nitric Oxide/physiology , Plant Extracts/pharmacology , Rats, Sprague-Dawley , Rubus/chemistry , Signal Transduction , Superoxides/metabolism
8.
Brain Res ; 1648(Pt A): 69-80, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27444557

ABSTRACT

While the number of patients diagnosed with neurodegenerative disorders like Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease is increasing, there are currently no effective treatments that significantly limit the neuronal cell death underlying these diseases. Chlorogenic acid (CGA), a polyphenolic compound found in high concentration in coffee, is known to possess antioxidant and free radical scavenging activity. In this study, we investigated the neuroprotective effects of CGA and its major metabolites in primary cultures of rat cerebellar granule neurons. We show that CGA and caffeic acid displayed a dramatic protective effect against the nitric oxide donor, sodium nitroprusside. In marked contrast, ferulic acid and quinic acid had no protective effect against this nitrosative stress. While CGA and quinic acid had no protective effect against glutamate-induced cell death, caffeic acid and ferulic acid significantly protected neurons from excitotoxicity. Finally, caffeic acid was the only compound to display significant protective activity against hydrogen peroxide, proteasome inhibition, caspase-dependent intrinsic apoptosis, and endoplasmic reticulum stress. These results indicate that caffeic acid displays a much broader profile of neuroprotection against a diverse range of stressors than its parent polyphenol, CGA, or the other major metabolites, ferulic acid and quinic acid. We conclude that caffeic acid is a promising candidate for testing in pre-clinical models of neurodegeneration.


Subject(s)
Caffeic Acids/therapeutic use , Chlorogenic Acid/therapeutic use , Neuroprotection/drug effects , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Caffeic Acids/metabolism , Caffeic Acids/pharmacology , Cell Death/drug effects , Coffee/metabolism , Coumaric Acids/metabolism , Coumaric Acids/therapeutic use , Cytoplasmic Granules/metabolism , Glutamic Acid/metabolism , Gray Matter/metabolism , Hydrogen Peroxide/metabolism , Neurons/metabolism , Neuroprotection/physiology , Neuroprotective Agents/pharmacology , Nitroprusside , Parkinson Disease/metabolism , Primary Cell Culture , Rats , Rats, Sprague-Dawley
9.
Recent Pat CNS Drug Discov ; 7(3): 230-5, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22742422

ABSTRACT

Oxidative stress and glutathione (GSH) depletion are both recognized as significant contributors to the pathogenesis of many devastating neurodegenerative diseases. In particular, mitochondrial dysfunction leads to the aberrant production and accumulation of reactive oxygen species (ROS), which are capable of oxidizing key cellular proteins, lipids, and DNA, ultimately triggering cell death. In addition to other roles that it plays in the cell, GSH functions as a critical scavenger of these ROS. Therefore, GSH depletion exacerbates cell damage due to free radical generation. Strategies that increase or preserve the levels of intracellular GSH have been shown to act in a neuroprotective manner, suggesting that augmentation of the available GSH pool may be a promising therapeutic target for neurodegeneration. This review discusses the capacity of a cystine-rich, whey protein supplement (Immunocal®) to enhance the de novo synthesis of GSH in neurons, and highlights its potential as a novel therapeutic approach to mitigate the oxidative damage that underlies the pathogenesis of various neurodegenerative diseases. Additionally, this review discusses various patents from 1993 to 2012 both with Immunocal® and other methods that modulate GSH in neurodegeneration.


Subject(s)
Antioxidants/therapeutic use , Dietary Supplements , Glutathione/agonists , Milk Proteins/therapeutic use , Nervous System/metabolism , Neurodegenerative Diseases/prevention & control , Neuroprotective Agents/therapeutic use , Animals , Antioxidants/metabolism , Glutathione/metabolism , Humans , Milk Proteins/metabolism , Neurodegenerative Diseases/diet therapy , Neurons/metabolism , Neuroprotective Agents/metabolism , Oxidation-Reduction , Oxidative Stress , Patents as Topic , Whey Proteins
10.
Molecules ; 15(11): 7792-814, 2010 Nov 03.
Article in English | MEDLINE | ID: mdl-21060289

ABSTRACT

A variety of antioxidant compounds derived from natural products (nutraceuticals) have demonstrated neuroprotective activity in either in vitro or in vivo models of neuronal cell death or neurodegeneration, respectively. These natural antioxidants fall into several distinct groups based on their chemical structures: (1) flavonoid polyphenols like epigallocatechin 3-gallate (EGCG) from green tea and quercetin from apples; (2) non-flavonoid polyphenols such as curcumin from tumeric and resveratrol from grapes; (3) phenolic acids or phenolic diterpenes such as rosmarinic acid or carnosic acid, respectively, both from rosemary; and (4) organosulfur compounds including the isothiocyanate, L-sulforaphane, from broccoli and the thiosulfonate allicin, from garlic. All of these compounds are generally considered to be antioxidants. They may be classified this way either because they directly scavenge free radicals or they indirectly increase endogenous cellular antioxidant defenses, for example, via activation of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2) transcription factor pathway. Alternative mechanisms of action have also been suggested for the neuroprotective effects of these compounds such as modulation of signal transduction cascades or effects on gene expression. Here, we review the literature pertaining to these various classes of nutraceutical antioxidants and discuss their potential therapeutic value in neurodegenerative diseases.


Subject(s)
Antioxidants/therapeutic use , Dietary Supplements , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Antioxidants/chemistry , Antioxidants/pharmacology , Apoptosis/drug effects , Neurons/drug effects , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
11.
Antioxid Redox Signal ; 11(3): 469-80, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18754708

ABSTRACT

Epigallocatechin-3-gallate (EGCG) is a major flavonoid component of green tea that displays antiapoptotic effects in numerous models of neurotoxicity. Although the intrinsic free radical scavenging activity of EGCG likely contributes to its antiapoptotic effect, other modes of action have also been suggested. We systematically analyzed the antiapoptotic action of EGCG in primary cultures of rat cerebellar granule neurons (CGNs). The dose-dependent protective effects of EGCG were determined after coincubation with eight different stimuli that each induced neuronal apoptosis by distinct mechanisms. Under these conditions, EGCG provided significant neuroprotection only from insults that induce apoptosis by causing mitochondrial oxidative stress. Despite this selective antiapoptotic effect, EGCG did not significantly alter the endogenous activities or expression of Mn(2+)- superoxide dismutase, glutathione peroxidase, Nrf2, or Bcl-2. Subfractionation of CGNs after incubation with (3)H-EGCG revealed that a striking 90-95% of the polyphenol accumulated in the mitochondrial fraction. These data demonstrate that EGCG selectively protects neurons from apoptosis induced by mitochondrial oxidative stress. This effect is likely due to accumulation of EGCG in the mitochondria, where it acts locally as a free radical scavenger. These properties of EGCG make it an interesting therapeutic candidate for neurodegenerative diseases involving neuronal apoptosis triggered by mitochondrial oxidative stress.


Subject(s)
Apoptosis/drug effects , Catechin/analogs & derivatives , Mitochondria/drug effects , Neurons/drug effects , Oxidative Stress/drug effects , Tea/chemistry , Animals , Catechin/metabolism , Catechin/pharmacology , Immunohistochemistry , Mitochondria/metabolism , Neurons/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL