Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Nanoscale ; 16(15): 7678-7689, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38533617

ABSTRACT

Magnetic nanoparticles (MNPs) provide new opportunities for enzyme-free biosensing of nucleic acid biomarkers and magnetic actuation by patterning on DNA origami, yet how the DNA grafting density affects their dynamics and accessibility remains poorly understood. Here, we performed surface functionalization of MNPs with single-stranded DNA (ssDNA) via click chemistry with a tunable grafting density, which enables the encapsulation of single MNPs inside a functional polymeric layer. We used several complementary methods to show that particle translational and rotational dynamics exhibit a sigmoidal dependence on the ssDNA grafting density. At low densities, ssDNA strands adopt a coiled conformation that results in minor alterations to particle dynamics, while at high densities, they organize into polymer brushes that collectively influence particle dynamics. Intermediate ssDNA densities, where the dynamics are most sensitive to changes, show the highest magnetic biosensing sensitivity for the detection of target nucleic acids. Finally, we demonstrate that MNPs with high ssDNA grafting densities are required to efficiently couple to DNA origami. Our results establish ssDNA grafting density as a critical parameter for the functionalization of MNPs for magnetic biosensing and functionalization of DNA nanostructures.


Subject(s)
Magnetite Nanoparticles , Nucleic Acids , DNA/chemistry , DNA, Single-Stranded , Magnetic Phenomena , Nucleic Acid Conformation
2.
ACS Appl Mater Interfaces ; 12(1): 217-226, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31804796

ABSTRACT

Magnetic nanoparticles are critical to a broad range of applications from medical diagnostics and therapeutics to biotechnological processes and single-molecule manipulation. To advance these applications, facile and robust routes to synthesize highly magnetic nanoparticles over a wide size range are needed. Here, we demonstrate that changing the degassing temperature of thermal decomposition of metal acetylacetonate precursors from 90 to 25 °C tunes the size of ferrimagnetic ZnxFe3-xO4 nanocubes from 25 to 100 nm, respectively. We show that degassing at 90 °C nearly entirely removes acetylacetone ligands from the reaction, which results in an early formation of monomers and a reaction-controlled growth following LaMer's model toward small nanocubes. In contrast, degassing at 25 °C only partially dissociates acetylacetone ligands from the metal center and triggers a delayed formation of monomers, which leads to intermediate assembled structures made of tiny irregular crystallites and an eventual formation of large nanocubes via a diffusion-controlled growth mechanism. Using complementary techniques, we determine the substitution fraction x of Zn2+ to be in the range of 0.35-0.37. Our method reduces the complexity of the thermal decomposition method by narrowing the synthesis parameter space to a single physical parameter and enables fabrication of highly magnetic and uniform zinc ferrite nanocubes over a broad size range. The resulting particles are promising for a range of applications from magnetic fluid hyperthermia to actuation of macromolecules.


Subject(s)
Ferric Compounds/chemistry , Hydroxybutyrates/chemistry , Nanostructures/chemistry , Pentanones/chemistry , Zinc Compounds/chemistry , Ligands
3.
Nano Lett ; 18(4): 2672-2676, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29554806

ABSTRACT

Self-assembled DNA structures enable creation of specific shapes at the nanometer-micrometer scale with molecular resolution. The construction of functional DNA assemblies will likely require dynamic structures that can undergo controllable conformational changes. DNA devices based on shape complementary stacking interactions have been demonstrated to undergo reversible conformational changes triggered by changes in ionic environment or temperature. An experimentally unexplored aspect is how quickly conformational transitions of large synthetic DNA origami structures can actually occur. Here, we use time-resolved small-angle X-ray scattering to monitor large-scale conformational transitions of a two-state DNA origami switch in free solution. We show that the DNA device switches from its open to its closed conformation upon addition of MgCl2 in milliseconds, which is close to the theoretical diffusive speed limit. In contrast, measurements of the dimerization of DNA origami bricks reveal much slower and concentration-dependent assembly kinetics. DNA brick dimerization occurs on a time scale of minutes to hours suggesting that the kinetics depend on local concentration and molecular alignment.


Subject(s)
DNA/chemistry , Magnesium Chloride/chemistry , Nanostructures/chemistry , Nucleic Acid Conformation , Dimerization , Kinetics , Nanostructures/ultrastructure , Nanotechnology , Scattering, Small Angle , X-Ray Diffraction
4.
J Mol Biol ; 396(1): 153-65, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-19925806

ABSTRACT

Riboswitches are elements of mRNA that regulate gene expression by undergoing structural changes upon binding of small ligands. Although the structures of several riboswitches have been solved with their ligands bound, the ligand-free states of only a few riboswitches have been characterized. The ligand-free state is as important for the functionality of the riboswitch as the ligand-bound form, but the ligand-free state is often a partially folded structure of the RNA, with conformational heterogeneity that makes it particularly challenging to study. Here, we present models of the ligand-free state of a thiamine pyrophosphate riboswitch that are derived from a combination of complementary experimental and computational modeling approaches. We obtain a global picture of the molecule using small-angle X-ray scattering data and use an RNA structure modeling software, MC-Sym, to fit local structural details to these data on an atomic scale. We have used two different approaches to obtaining these models. Our first approach develops a model of the RNA from the structures of its constituent junction fragments in isolation. The second approach treats the RNA as a single entity, without bias from the structure of its individual constituents. We find that both approaches give similar models for the ligand-free form, but the ligand-bound models differ for the two approaches, and only the models from the second approach agree with the ligand-bound structure known previously from X-ray crystallography. Our models provide a picture of the conformational changes that may occur in the riboswitch upon binding of its ligand. Our results also demonstrate the power of combining experimental small-angle X-ray scattering data with theoretical structure prediction tools in the determination of RNA structures beyond riboswitches.


Subject(s)
Nucleic Acid Conformation , RNA/chemistry , Thiamine Pyrophosphate/chemistry , Aptamers, Nucleotide/chemistry , Arabidopsis/genetics , Base Sequence , Ligands , Magnesium/pharmacology , Models, Molecular , Molecular Sequence Data , Scattering, Small Angle , Solutions , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL