Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
J Environ Manage ; 326(Pt B): 116842, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36436245

ABSTRACT

Data scarcity has caused enormous problems in non-point pollution predictions and the related source apportionment. In this study, a new framework was developed to undertake the source apportionment at a large-scale and ungauged catchment, by integrating the physically-based model and a surrogate model. The improvements were made, in terms of the application of a physically-based model in an ungauged area for the transfer process and the parametric transplantation process. The new framework was then tested in the Chaohu Lake basin, China. The result suggested that there has been a good match between simulated and observed data. Although the planting industry was the largest emission source with 48.16% of nitrogen (N), itonly contributed 12.61% of N flux to the Chaohu Lake. The ungauged catchments surrounding the Chaohu Lake were identified as non-negligible sources with 8.46% of phosphorus (P) contribution. The rainfall conditions could have great impacts on source apportionment results; e.g., the planting industry contributed from 68.17t of P in dry year to 436.02t in wet year. The new framework could be extended to other large-scale watersheds for source apportionment with data limitations.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Lakes , Phosphorus/analysis , Nitrogen/analysis , China
SELECTION OF CITATIONS
SEARCH DETAIL