Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phytomedicine ; 114: 154803, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058946

ABSTRACT

BACKGROUND: The resistance of Gram-negative bacteria to polymyxin B, caused by the plasmid-mediated colistin resistance gene mcr-1, which encodes a phosphoethanolamine transferase (MCR-1), is a serious threat to global public health. Therefore, it is urgent to find new drugs that can effectively alleviate polymyxin B resistance. Through the screening of 78 natural compounds, we found that cajanin stilbene acid (CSA) can significantly restore the susceptibility of polymyxin B to mcr-1 positive Escherichia coli (E. coli). PURPOSE: In this study, we tried to evaluate the ability of CSA to restore the susceptibility of polymyxin B towards the E. coli, and explore the mechanism of sensitivity recovery. STUDY DESIGN AND METHODS: Checkerboard MICs, time-killing curves, scanning electron microscope, lethal and semi-lethal models of infection in mice were used to assess the ability of CSA to restore the susceptibility of polymyxyn to E. coli. The interaction between CSA and MCR-1 was evaluated using surface plasmon resonance (SPR), and molecular docking experiments. RESULTS: Here, we find that CSA, a potential direct inhibitor of MCR-1, effectively restores the sensitivity of E. coli to polymyxin B. CSA can restore the sensitivity of polymyxin B to drug-resistant E. coli, and the MIC value can be reduced to 1 µg/ml. The time killing curve and scanning electron microscopy results also showed that CSA can effectively restore polymyxin B sensitivity. In vivo experiments showed that the simultaneous use of CSA and polymyxin B can effectively reduce the infection of drug-resistant E. coli in mice. SPR and molecular docking experiments confirmed that CSA strongly bound to MCR-1. The 17-carbonyl oxygen and 12- and 18­hydroxyl oxygens of CSA were the key sites binding to MCR-1. CONCLUSION: CSA is able to significantly restore the sensitivity of polymyxin B to E. coli in vivo and in vitro. CSA inhibits the enzymatic activity of the MCR-1 protein by binding to key amino acids at the active center of the MCR-1 protein.


Subject(s)
Colistin , Escherichia coli Proteins , Animals , Mice , Colistin/pharmacology , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli , Molecular Docking Simulation , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/pharmacology , Plasmids
2.
Arab J Chem ; 15(7): 103916, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35462797

ABSTRACT

Since the outbreak of COVID-19, this virus has been constantly mutating. The latest mutant Omicron has been identified as VOC by WHO. The main reason for its concern is the mutation of 46 amino acids in spike protein, which has brought the global epidemic prevention into another difficulty. Herbal aromatic plant Amomum tsao-ko was excavated from formula 1 and 2 for the treatment of COVID-19 in China, and its active components were extracted and identified. Molecular dynamics simulation and Fpocket were applied to find the key sites on RBDOmicron, and molecular docking was also used to reveal the interaction between A. tsao-ko essential oil (AEO) and RBDOmicron. The AEO components were analyzed and identified by GC/Q-TOF MS. There were 20 kinds of AEO with a relative area percentage of more than 1%, and they were related to the three active centres of RBDOmicron. In this study, virtual screening was used to mine the essential oil components of medicinal plants, and it was found that the components could interact with the spike protein RBD in aerosol to block the interaction of RBD and hACE2, thus cutting off the transmission route and protecting the host. This study has certain guiding significance in the modernization of Traditional Chinese medicine and the prevention of COVID-19.

3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1061-1062: 364-371, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28800540

ABSTRACT

A simple, green and efficient extraction method named modified-solvent free microwave extraction (M-SFME) was employed for the extraction of essential oils (EOs) from Amomun tsao-ko. The process of M-SFME was optimized with the prominent preponderance of such higher extraction yield (1.13%) than those of solvent free microwave extraction (SFME, 0.91%) and hydrodistillation (HD, 0.84%) under the optimal parameters. Thirty-four volatile substances representing 95.4% were identified. The IC50 values of EOs determined by DPPH radical scavenging activity and ß-carotene/linoleic acid bleaching assay were 5.27 and 0.63mg/ml. Furthermore, the EOs exhibited moderate to potent broad-spectrum antimicrobial activity against all tested strains including five gram-positive and two gram-negative bacteria (MIC: 2.94-5.86mg/ml). In general, M-SFME is a potential and desirable alternative for the extraction of EOs from aromatic herbs, and the EOs obtained from A. tsao-ko can be explored as a potent natural antimicrobial and antioxidant preservative ingredient in food industry from the technological and economical points of view.


Subject(s)
Amomum/chemistry , Anti-Infective Agents/analysis , Anti-Infective Agents/isolation & purification , Antioxidants/analysis , Antioxidants/isolation & purification , Oils, Volatile/analysis , Oils, Volatile/isolation & purification , Plant Extracts/analysis , Plant Extracts/isolation & purification , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bacteria/drug effects , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Reproducibility of Results
4.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1033-1034: 40-48, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27517524

ABSTRACT

In this study, green and efficient deep eutectic solvent-based negative pressure cavitation-assisted extraction (DES-NPCE) followed by macroporous resin column chromatography was developed to extract and separate four main isoflavonoids, i.e. prunetin, tectorigenin, genistein and biochanin A from Dalbergia odorifera T. Chen leaves. The extraction procedure was optimized systematically by single-factor experiments and a Box-Behnken experimental design combined with response surface methodology. The maximum extraction yields of prunetin, tectorigenin, genistein and biochanin A reached 1.204, 1.057, 0.911 and 2.448mg/g dry weight, respectively. Moreover, the direct enrichment and separation of four isoflavonoids in DES extraction solution was successfully achieved by macroporous resin AB-8 with recovery yields of more than 80%. The present study provides a convenient and efficient method for the green extraction and preparative separation of active compounds from plants.


Subject(s)
Chromatography, Liquid/methods , Dalbergia/chemistry , Isoflavones/isolation & purification , Plant Extracts/chemistry , Plant Leaves/chemistry , Isoflavones/analysis , Isoflavones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL