Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37317908

ABSTRACT

BACKGROUND: Fuzi-Gancao herb couple is one of the most common herb couples involved in the TCM formula, which was used for the treatment of chronic diseases. The herb couple has a hepatoprotective effect. However, its main components and therapeutic mechanism are not yet clear. This study aims to elucidate the therapeutic effect and mechanism of the Fuzi-Gancao herb couple on NAFLD from animal experiments, network pharmacology, and molecular docking. METHODS: 60 Male C57BL/6 mice (20 g ± 2 g) were randomly divided into six groups including the blank group (n=10) and NALFD group (n=50). The mice of the NALFD group were fed with a high-fat diet for 20 weeks to establish the NAFLD model and the NALFD mice were randomly divided into five groups including positive group (berberine), model group and F-G groups with three dosages (0.257, 0.514, 0.771 g/kg) (n=10). After 10 weeks of administration, the serum was collected for the analysis of ALT, AST, LDL-c, HDL-c, and TC, and liver tissues were collected for pathological analysis. The TCMAS database was used to collect the main components and targets of the Fuzi-Gancao herb couple. The GeneCards database was used to collect NAFLD-related targets, and the key targets were obtained by intersecting with herbal targets. The disease-component-target relationship diagram was constructed by Cytoscape 3.9.1. The obtained key targets were imported into the String database to obtain the PPI network, and imported into the DAVID database for KEGG pathway analysis and GO analysis. Finally, the key targets and key gene proteins were imported into Discovery Studio 2019 for molecular docking verification. RESULTS: In this study, H-E staining indicated the pathological changes of liver tissue in Fuzi-Gancao groups were significantly improved, and the levels of AST, ALT, TC, HDL-c, and LDL-c in serum of Fuzi-Gancao groups decreased in a dose-dependent manner, compared with the model group. 103 active components and 299 targets in the Fuzi-Gancao herb couple were confirmed in the TCMSP database and 2062 disease targets in NAFLD were obtained. 142 key targets and 167 signal pathways were screened, such as the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, IL-17 signaling pathway, TNF signaling pathway, and so on. The main bioactive ingredients of Fuzi-Gancao herb couple in the treatment of NAFLD are quercetin, kaempferol, naringenin, inermine, (R)-norcoclaurine, isorhamnetin, ignavine, 2,7-Dideacetyl-2,7-dibenzoyl-taxayunnanine F, glycyrol mainly involving IL6, AKT1, TNF, TP53, IL1B, VEGFA and other core targets. Molecular docking analysis indicated that there is a good affinity between the key components and the key targets. CONCLUSION: This study preliminarily explained the main components and mechanism of the Fuzi-Gancao herb couple in the treatment of NAFLD and provided an idea for subsequent research.

2.
Int J Nanomedicine ; 15: 7951-7965, 2020.
Article in English | MEDLINE | ID: mdl-33116511

ABSTRACT

INTRODUCTION: Glioma is the primary malignant brain tumor with poor prognosis. Berberine (BBR) was the potential drug for anti-tumor in glioma cells. Based on its limitation of poor aqueous solubility and instability, little information of BBR nanoparticles is reported in glioma. METHODS: Different solutions including 5% glucose, 1*PBS, ddH2O, 0.9% NaCl, cell culture medium were selected, and only 5% glucose and ddH2O exhibited BBR-related nanoparticles. After heating for a longer time or adding a higher concentration of glucose solution, BBR nanoparticles were detected by TEM analysis. The uptake of BBR-Glu or BBR-Water nanoparticles were detected by immunofluorescence analysis for BBR autofluorescence. Cell viability was measured by MTT assay and Western blotting analysis. Apoptosis was performed with flow cytometric analysis and was detected by cleaved caspase-3 immuno-fluorescent staining. Cell cycle was used by flow cytometric analysis. Cytoskeleton was observed by confocal analysis using the neuron specific Class III ß-tubulin and ß-tubulin antibodies. Mitochondrial-related proteins were detected by Western blotting analyses and mito-tracker staining in live cells. Mitochondrion structures were observed by TEM analysis. ROS generation and ATP production were detected by related commercial kits. The tracking of BBR-Glu or BBR-Water nanoparticles into blood-brain barrier was observed in primary tumor-bearing models. The fluorescence of BBR was detected by confocal analyses in brains and gliomas. RESULTS: BBR-Glu nanoparticles became more homogenized and smaller with dose- and time-dependent manners. BBR-Glu nanoparticles were easily absorbed in glioma cells. The IC50 of BBR-Glu in U87 and U251 was far lower than that of BBR-Water. BBR-Glu performed better cytotoxicity, with higher G2/M phase arrest, decreased cell viability by targeting mitochondrion. In primary U87 glioma-bearing mice, BBR-Glu exhibited better imaging in brains and gliomas, indicating that more BBR moved across the blood-brain tumor barrier. DISCUSSION: BBR-Glu nanoparticles have better solubility and stability, providing a promising strategy in glioma precision treatment.


Subject(s)
Berberine/chemistry , Berberine/pharmacology , Glioma/pathology , Glucose/chemistry , Mitochondria/drug effects , Nanoparticles/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Berberine/metabolism , Biological Transport , Blood-Brain Barrier/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , M Phase Cell Cycle Checkpoints/drug effects , Mice , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL