Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 311
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Foods Hum Nutr ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436827

ABSTRACT

Edgeworthia gardneri (Wall.) Meisn., a member of the genus Edgeworthia in the family Thymelaeaceae, has long been applied as an edible and medicinal plant in China. E. gardneria has a hypoglycemic effect and is used to prepare daily drinks for the prevention and treatment of diabetes. However, the hypoglycemic substances involved remain unknown. The present study aimed to screen the α-glucosidase-inhibitors of E. gardneri and analyze its chemical profile using a ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) method. As a result, the ethyl acetate fraction (EAF) had significant α-glucosidase-inhibitory and antioxidant activities but did not show an α-amylase-inhibitory activity. A total of 67 compounds were identified in the EAF by UPLC-Q-TOF-MS/MS analysis; among them, 48 compounds were first discovered in the genus Edgeworthia. Additionally, five flavonoids, namely, isoorintin, secoisolaricirinol, tiliroside, chrysin, and kaempferol, had α-glucosidase-inhibitory activities. Rutin had a α-amylase-inhibitory activity. Daphnoretin, a kind of coumarin, has α-glucosidase and α-amylase-inhibitory activities. These findings enrich the chemical library of E. gardneria. EAF has a selective α-glucosidase-inhibitory activity, and flavonoids and coumarins may be the active components of EAF. E. gardneria has important value for developing multiple-target hypoglycemic drugs.

2.
Fitoterapia ; 175: 105916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527590

ABSTRACT

Six previously unreported solanidane steroidal alkaloids, namely lyrasolanosides A-F, were isolated from Solanum lyratum. In addition, five known steroidal alkaloids were also identified. The structures of these compounds were determined through the use of NMR, HRESIMS,UV, IR and ECD analysis. To assess their bioactivities, the cytotoxic effects of the six previously unreported compounds were evaluated on A549 cells. The results revealed that lyrasolanoside B (2) exhibited the highest potency among them. Lyrasolanoside B (2) exhibited significant inhibition of cell migration, invasion, and adhesion dramatically. Mechanistically, it was found to suppress the activity of JAK2/STAT3 signaling pathway by downregulating the expression of phosphorylated JAK2/STAT3 in an exosome-dependent manner. In addition, lyrasolanoside B (2) was found to significantly upregulate the expression of E-cadherin and downregulate the expression of N-cadherin and vimentin. These findings indicate that lyrasolanoside B (2) inhibits the metastasis of A549 cells by suppressing exosome-mediated EMT. These findings suggest that lyrasolanoside B (2) may inhibit the metastasis of lung cancer by regulating A549-derived exosomes.


Subject(s)
Solanum , Humans , A549 Cells , Molecular Structure , Solanum/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Movement/drug effects , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Solanaceous Alkaloids/pharmacology , Solanaceous Alkaloids/isolation & purification , Signal Transduction/drug effects , Alkaloids/pharmacology , Alkaloids/isolation & purification , China
3.
Aging Clin Exp Res ; 36(1): 71, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485798

ABSTRACT

PURPOSE: This study aimed to develop and validate a nomogram for predicting the efficacy of transurethral surgery in benign prostatic hyperplasia (BPH) patients. METHODS: Patients with BPH who underwent transurethral surgery in the West China Hospital and West China Shang Jin Hospital were enrolled. Patients were retrospectively involved as the training group and were prospectively recruited as the validation group for the nomogram. Logistic regression analysis was utilized to generate nomogram for predicting the efficacy of transurethral surgery. The discrimination of the nomogram was assessed using the area under the receiver operating characteristic curve (AUC) and calibration plots were applied to evaluate the calibration of the nomogram. RESULTS: A total of 426 patients with BPH who underwent transurethral surgery were included in the study, and they were further divided into a training group (n = 245) and a validation group (n = 181). Age (OR 1.07, 95% CI 1.02-1.15, P < 0.01), the compliance of the bladder (OR 2.37, 95% CI 1.20-4.67, P < 0.01), the function of the detrusor (OR 5.92, 95% CI 2.10-16.6, P < 0.01), and the bladder outlet obstruction (OR 2.21, 95% CI 1.07-4.54, P < 0.01) were incorporated in the nomogram. The AUC of the nomogram was 0.825 in the training group, and 0.785 in the validation group, respectively. CONCLUSION: The nomogram we developed included age, the compliance of the bladder, the function of the detrusor, and the severity of bladder outlet obstruction. The discrimination and calibration of the nomogram were confirmed by internal and external validation.


Subject(s)
Prostatic Hyperplasia , Transurethral Resection of Prostate , Urinary Bladder Neck Obstruction , Male , Humans , Prostatic Hyperplasia/surgery , Nomograms , Retrospective Studies , Urinary Bladder Neck Obstruction/surgery
4.
Chin J Integr Med ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212494

ABSTRACT

OBJECTIVE: To investigate whether Radix Sanguisorbae (RS, Diyu) could restore intestinal barrier function following sepsis using a cecal ligation and puncture (CLP)-induced septic rat model and lipopolysaccharide (LPS)-challenged IEC-6 cell model, respectively. METHODS: Totally 224 rats were divided into 4 groups including a control, sham, CLP and RS group according to a random number table. The rats in the control group were administrated with Ringer's lactate solution (30 mL/kg) with additional dopamine [10 µ g/(kg·min)] and given intramuscular injections of cefuroxime sodium (10 mg/kg) 12 h following CLP. The rats in the RS group were administrated with RS (10 mg/kg) through tail vein 1 h before CLP and treated with RS (10 mg/kg) 12 h following CLP. The rats in the sham group were only performed abdominal surgery without CLP. The rats in the CLP group were performed with CLP without any treatment. The other steps were same as control group. The effects of RS on intestinal barrier function, mesenteric microvessels barrier function, multi-organ function indicators, inflammatory response and 72 h survival window following sepsis were observed. In vitro, the effects of RS on LPS-challenged IEC-6 cell viability, the expressions of zona occludens-1 (ZO-1) and ferroptosis index were evaluated by cell counting kit-8, immunofluorescence and Western blot analysis. Bioinformatic tools were applied to investigate the pharmacological network of RS in sepsis to predict the active compounds and potential protein targets and pathways. RESULTS: The sepsis caused severe intestinal barrier dysfunction, multi-organ injury, lipid peroxidation accumulation, and ferroptosis in vivo. RS treatment significantly prolonged the survival time to 56 h and increased 72-h survival rate to 7/16 (43.75%). RS also improved intestinal barrier function and relieved intestinal inflammation. Moreover, RS significantly decreased lipid peroxidation and inhibited ferroptosis (P<0.05 or P<0.01). Administration of RS significantly worked better than Ringer's solution used alone. Using network pharmacology prediction, we found that ferroptosis and hypoxia inducible factor-1 (HIF-1 α) signaling pathways might be involved in RS effects on sepsis. Subsequent Western blot, ferrous iron measurements, and FerroOrange fluorescence of ferrous iron verified the network pharmacology predictions. CONCLUSION: RS improved the intestinal barrier function and alleviated intestinal injury by inhibiting ferroptosis, which was related in part to HIF-1 α/heme oxygenase-1/Fe2+ axis.

5.
Nat Prod Res ; : 1-7, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289060

ABSTRACT

Searching for new anti-ischemic stroke (anti-IS) drugs has always been a hot topic in the pharmaceutical industry. Natural products are an important source of discovering anti-IS drugs. The aim of the present study is to extract, rapidly prepare and explore the neuroprotective effect of texasin, a main active constituent from Caragana jubata (Pall.) Poir., which is a kind of Tibetan medicine with a clear anti-IS effect. The results showed that 95% ethanol was the optimal extraction solvent. A three-step rapid preparation method for texasin was successfully established, with a purity of 99.2%. Texasin at the concentration of 25-100 µM had no effect on the viability of normal cultured PC12 cells; 12.5 and 25 µM texasin could enhance the viability of PC12 cells damaged by oxygen and glucose deprivation/reoxygenation (OGD/R), and their effects are comparable to the positive drug edaravone at the concentration of 50 µM. Compared with the normal group, the expression of Bcl-2 protein in OGD/R-injured PC12 cells was downregulated (p < 0.01), and that of PERK, eIF2α, ATF4, CHOP, Bax and Cleaved caspase-3 proteins were upregulated (p < 0.01, p < 0.001). Compared with the OGD/R group, 25 µM texasin could upregulate the expression of Bcl-2 protein (p < 0.01), and downregulate that of PERK, eIF2α, ATF4, CHOP, Bax and Cleaved caspase-3 proteins (p < 0.01, p < 0.001). The 7-OH and 1-O of texasin formed H-bonds with residues Cys891 of the hinge ß-strand of PERK, which is crucial for kinase inhibitors. The above results suggest that the method established in the present study achieved rapid preparation of high-purity texasin. Texasin might inhibit neuronal apoptosis via the regulation of endoplasmic reticulum stress PERK/eIF2α/ATF4/CHOP signalling pathway to exert a protective effect on OGD/R-injured PC12 cells. Aiding by molecular docking, texasin was assumed to be a potential PERK inhibitor.

6.
Biomed Pharmacother ; 171: 116190, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38278026

ABSTRACT

Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.


Subject(s)
Alzheimer Disease , Morphinans , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Neuroimmunomodulation , Scopolamine/pharmacology , Inflammation/pathology , Homeostasis , Brain/metabolism , Cholinergic Agents/pharmacology
7.
Am J Cardiol ; 211: 239-244, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37979640

ABSTRACT

Excessive calcium-phosphorus product (Ca-P product) in patients with chronic kidney disease (CKD) is associated with coronary artery calcification and coronary artery disease, but the relation between Ca-P product and coronary artery disease in non-CKD populations has rarely been reported. Therefore, we designed a cross-sectional study to investigate the role of Ca-P product in total coronary artery occlusion (TCAO) in a non-CKD population. We reviewed 983 patients who underwent coronary angiography at Guangyuan Central Hospital from February 2018 to January 2020. Ca-P product (mg2/dl2) was calculated as Ca (mmol/L) × 4 × P (mmol/L) × 3.1 and was analyzed as a continuous and tertiary variable. TCAO was defined as complete occlusion of any coronary artery by coronary angiography (thrombolysis in myocardial infarction flow grade 0). Statistical analysis was performed using univariate and multivariate logistic regression models and restricted cubic splines. Univariate logistic regression analysis showed a statistically significant association between Ca-P product and TCAO (odds ratio [OR] 0.97, 95% confidence interval [CI] 0.95 to 0.99, p <0.001). After stepwise adjustment for covariates, the risk of TCAO was reduced by 40% in the high versus low Ca-P group (OR 0.6, 95% CI 0.38 to 0.95, p = 0.031), and the risk of TCAO was predicted to decrease by 4% (OR 0.96, 95% CI 0.94 to 0.99, p = 0.006) for each unit increase in Ca-P product. Restricted cubic splines showed a nonlinear relation between Ca-P product and TCAO, with a significant decrease in the risk of TCAO after reaching 27.46 (nonlinear p = 0.047). In conclusion, in non-CKD populations, a higher Ca-P product (≥27.46 mg2/dl2) may help avoid TCAO.


Subject(s)
Coronary Artery Disease , Coronary Occlusion , Renal Insufficiency, Chronic , Humans , Calcium , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Coronary Artery Disease/complications , Coronary Occlusion/complications , Coronary Occlusion/diagnosis , Coronary Occlusion/epidemiology , Cross-Sectional Studies , Phosphorus , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Risk Factors
8.
Food Chem ; 437(Pt 2): 137917, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37944391

ABSTRACT

A novel methodology based on ultrasonic-assisted sequential extraction, dispersive-SPE purification, and single-injection on liquid chromatography-tandem mass spectrometry (LC-MS/MS) is proposed, for the first time, to simultaneously measure 14 tri-OPEs and 9 di-OPEs in plant tissues. The samples were successively ultrasonicated with a mixture of hexane:dichloromethane (1:1, v/v) and 8% acetic acid in acetonitrile for extracting tri- and di-OPEs purified with graphitized carbon black and quantitated on LC-MS/MS at the same time. The recoveries of targeted tri- and di-OPEs in the matrix spike ranged from 66% to 120% and 71% to 110% respectively. The proposed method was validated by processing eight types of common vegetables including spinach (Spinacia oleracea L.), lettuce (Lactuca sativa), carrot (Daucus carota var. sativa Hoffm.), sweet potato (Solanum tuberosum L.), cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), green beans (Phaseolus vulgaris), and cowpeas (Vigna unguiculata), with the recoveries of surrogates ranging from 84% to 98%.


Subject(s)
Organophosphates , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Organophosphates/analysis , Esters/analysis , Ultrasonics , Lactuca , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid
9.
Nat Prod Res ; : 1-7, 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37661314

ABSTRACT

2,7,2'-Trihydroxy-3,4,4'7'-tetramethoxy-1,1'-biphenanthrene (1), a previously undescribed biphenanthrene, and five known phenanthrenes, i.e. 2,5-dihydroxy-4-methoxy-9,10-dihydroxyphenanthrene (2), 2,4-dihydroxy -7-methoxy-9,10-dihydroxyphenanthrene (3), 7-hydroxy-2-methoxy-phenanthrene-1,4-dione (4), 7-hydroxy-2-methoxy-9,10-dihydro-phenanthrene-1,4-dione (5), and 4,4',7,7'-tetrahydroxy-2,2'-dimethoxy-9,9',10,10'-tetrahydro-1,1'-biphenanthrene (6) were isolated from the whole plant (stems, leaves, roots and fruits) of Liparis nervosa (Thunb.) Lindl., which is a medicinal plant of the genus Liparis in the Orchidaceae family. The structures of isolates were identified using spectroscopic methods, including NMR and mass spectrometry. Additionally, the cytotoxic potency of all the isolates against human lung cancer A549 cell line was evaluated by an MTT assay. All the isolated compounds showed cytotoxic activities with IC50 values in the range of 10.20 ± 0.81 to 42.41 ± 2.34 µM. The obtained data highlight the importance of L. nervosa as a source of natural lead compounds for cancer therapy.

11.
Eur J Med Res ; 28(1): 222, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37408078

ABSTRACT

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, with a high morbidity and mortality rate. Exogenous vitamin C supplementation is a potential therapeutic option for the treatment of multi-organ dysfunction in sepsis due to the significantly lower levels of vitamin C in the circulating blood of sepsis patients compared to healthy subjects and the importance of vitamin C in many of the physiological processes of sepsis. Vitamin C may influence the function of numerous organs and systems, including the heart, lungs, kidneys, brain, and immune defences, by reducing oxidative stress, inhibiting inflammatory factor surges, regulating the synthesis of various mediators and hormones, and enhancing immune cell function. With the development of multiple clinical randomized controlled trials, the outcomes of vitamin C treatment for critically ill patients have been discussed anew. This review's objectives are to provide an overview of how vitamin C affects various organ functions in sepsis and to illustrate how it affects each organ. Understanding the pharmacological mechanism of vitamin C and the organ damage caused by sepsis may help to clarify the conditions and clinical applications of vitamin C.


Subject(s)
Ascorbic Acid , Sepsis , Humans , Ascorbic Acid/therapeutic use , Multiple Organ Failure/drug therapy , Multiple Organ Failure/etiology , Sepsis/complications , Sepsis/drug therapy , Oxidative Stress , Heart , Randomized Controlled Trials as Topic
12.
Bioresour Technol ; 386: 129574, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37506946

ABSTRACT

Modern paradigm has upgraded wastewater treatment plants (WWTPs) to water resources recovery facilities (WRRFs), where aerobic granular sludge (AGS) is a sewage treatment technology with promising phosphorus recovery (PR) potential. Herein, the AGS-based simultaneous nitrification, denitrification, and phosphorus removal coupling side-stream PR process (AGS-SNDPRr) was developed with municipal wastewater. Results revealed that AGS always maintained good structural stability, and pollutant removal was unaffected and effective after 40 days of anaerobic phosphorus-rich liquid extraction (fixed rate of 30%). The AGS-SNDPRr achieved a stable phosphorus recovery efficiency of 63.40%, and the side-stream PR further exaggerated in situ sludge reduction by 7.7-10%. Apart from responses of extracellular polymeric substances (EPS), the Matthew effect of typical denitrifying glycogen accumulating organisms (DGAOs) Candidatus_Competibacter up to 67.40% mainly contributed to enhanced performance of this new process. This study demonstrated a new approach for simultaneous advanced wastewater treatment, phosphorus recovery, and excess sludge minimization.


Subject(s)
Sewage , Water Purification , Denitrification , Waste Disposal, Fluid/methods , Phosphorus , Rivers , Bioreactors , Nitrification , Nitrogen/analysis
13.
Acta Pharmacol Sin ; 44(12): 2504-2524, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37482570

ABSTRACT

Sinomenine (SIN) is an isoquinoline alkaloid isolated from Sinomenii Caulis, a traditional Chinese medicine used to treat rheumatoid arthritis (RA). Clinical trials have shown that SIN has comparable efficacy to methotrexate in treating patients with RA but with fewer adverse effects. In this study, we explored the anti-inflammatory effects and therapeutic targets of SIN in LPS-induced RAW264.7 cells and in collagen-induced arthritis (CIA) mice. LPS-induced RAW264.7 cells were pretreated with SIN (160, 320, 640 µM); and CIA mice were administered SIN (25, 50 and 100 mg·kg-1·d-1, i.p.) for 30 days. We first conducted a solvent-induced protein precipitation (SIP) assay in LPS-stimulated RAW264.7 cells and found positive evidence for the direct binding of SIN to guanylate-binding protein 5 (GBP5), which was supported by molecular simulation docking, proteomics, and binding affinity assays (KD = 3.486 µM). More importantly, SIN treatment markedly decreased the expression levels of proteins involved in the GBP5/P2X7R-NLRP3 pathways in both LPS-induced RAW264.7 cells and the paw tissue of CIA mice. Moreover, the levels of IL-1ß, IL-18, IL-6, and TNF-α in both the supernatant of inflammatory cells and the serum of CIA mice were significantly reduced. This study illustrates a novel anti-inflammatory mechanism of SIN; SIN suppresses the activity of NLRP3-related pathways by competitively binding GBP5 and downregulating P2X7R protein expression, which ultimately contributes to the reduction of IL-1ß and IL-18 production. The binding specificity of SIN to GBP5 and its inhibitory effect on GBP5 activity suggest that SIN has great potential as a specific GBP5 antagonist.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Humans , Mice , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Interleukin-18/adverse effects , Receptors, Purinergic P2X7/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein , Lipopolysaccharides/pharmacology , Signal Transduction , Arthritis, Rheumatoid/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , GTP-Binding Proteins
14.
Bioresour Technol ; 384: 129312, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37307956

ABSTRACT

The anaerobic/oxic/anoxic simultaneous nitrification, denitrification and phosphorus removal process (AOA-SNDPR) is a promising technology for enhanced biological wastewater treatment and in situ sludge reduction. Herein, effects of aeration time (90, 75, 60, 45, and 30 min, respectively) on the AOA-SNDPR were evaluated including simultaneous nutrients removal, sludge characteristics, and microbial community evolution, where the role of a denitrifying glycogen accumulating organisms, Candidatus_Competibacter, was re-explored given its overwhelming dominance. Results revealed that nitrogen removal was more vulnerable, and a moderate aeration period of 45-60 min favored nutrients removal most. Low observed sludge yields (Yobs) were obtained with decreased aeration (as low as 0.02-0.08 g MLSS/g COD), while MLVSS/MLSS got increased. The dominance of Candidatus_Competibacter was identified as the key to endogenous denitrifying and in situ sludge reduction. This study would aid the low carbon- and energy-efficient aeration strategy for AOA-SNDPR systems treating low-strength municipal wastewater.


Subject(s)
Gammaproteobacteria , Nitrification , Denitrification , Sewage , Phosphorus , Anaerobiosis , Waste Disposal, Fluid/methods , Bioreactors , Wastewater , Nitrogen
15.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(5): 538-544, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37308238

ABSTRACT

OBJECTIVE: To systematically assess the efficacy of traditional Chinese therapy in the treatment of ICU-acquired weakness (ICU-AW). METHODS: PubMed, Cochrane Library, Embase, Web of Science, CNKI, Wanfang, VIP were retrieved by computer and were used to collect a randomized controlled trials (RCT) of traditional Chinese therapy for ICU-AW. The retrieval time was from databases establishment to December 2021. After 2 researchers independently screened the literature, extracted data and evaluated the risk of bias included in the study, and RevMan 5.4 software was used for Meta-analysis. RESULTS: 334 articles were selected, totally 13 clinical studies and 982 patients were included, including 562 in the trial group and 420 in the control group. Meta-analysis results showed that traditional Chinese therapy could improve clinical efficacy of ICU-AW patients [relative risk (RR) = 1.35, 95% confidence interval (95%CI) was 1.20 to 1.52, P < 0.000 01], improve the muscle strength [Medical Research Council score (MRC score); standardized mean difference (SMD) = 1.00, 95%CI was 0.67 to 1.33, P < 0.000 01], improve daily life ability [modified Barthel index score (MBI score); SMD = 1.67, 95%CI was 1.20 to 2.14, P < 0.000 01], shorten mechanical ventilation time (SMD = -1.47, 95%CI was -1.84 to -1.09, P < 0.000 01), reduce the length of intensive care unit (ICU) stay [mean difference (MD) = -3.28, 95%CI was -3.89 to -2.68, P < 0.000 01], reduce the total hospitalization time (MD = -4.71, 95%CI was -5.90 to -3.53, P < 0.000 01), reduce tumor necrosis factor-α (TNF-α; MD = -4.55, 95%CI was -6.39 to -2.70, P < 0.000 01) and interleukin-6 (IL-6; MD = -5.07, 95%CI was -6.36 to -3.77, P < 0.000 01). There was no obvious advantage in reducing the severity of the disease [acute physiology and chronic health evaluation II (APACHE II; SMD = -0.45, 95%CI was -0.92 to 0.03, P = 0.07). CONCLUSIONS: Based on the current research, traditional Chinese therapy can improve the clinical efficacy of ICU-AW, improve muscle strength and daily life ability, shorten mechanical ventilation, the length of ICU stay and total hospitalization time, reduce TNF-α and IL-6. But traditional Chinese therapy can not reduce the overall disease severity.


Subject(s)
Intensive Care Units , Medicine, Chinese Traditional , Muscle Weakness , Humans , APACHE , East Asian People , Interleukin-6 , Tumor Necrosis Factor-alpha , Muscle Weakness/therapy
16.
Int J Biol Macromol ; 242(Pt 3): 124873, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37196712

ABSTRACT

Nanochitins have been explored for preparing Pickering Emulsions, however its application is restricted by its simplex disperse nature. It was hypothesized that zwitterionic nanochitins should be capable of stabilizing oil/water (O/W) interfaces in wider pH range. Furthermore, the control of their size, disperse nature and self-assembly performance suggest the formulation of tunable emulsions. Zwitterionic nanochitins were prepared via Schiff base reaction. A systematic study was performed analyzing the disperse nature, fibril morphology, surface characteristic of modified nanochitins. Oil-in-Water Pickering Emulsions stabilized by modified nanochitins were formulated and emulsion stability was analyzed as function of concentration, pH and self-assembly property and further applied for prolonged antibacterial applications. Comparing freshly prepared nanochitins, neutral/alkaline stably dispersed nanochitins can be prepared while maintaining fibril characteristics such as fibril size, crystallinity, thermal stability and so on. Better suspension stability of modified nanochitins under alkaline conditon together with the self assembly performance resulting from amino groups and carboxyl groups benefit the enhanced emulsion stability under nanochitins concentreation of 0.2 %. Encapsulation of tea tree oil in Pickering Emulsions prolongs the diffusion rate oil in the aqueous environment, thus resulting prolongs its antibacterial performance against E. coli and B. subtilis.


Subject(s)
Tea Tree Oil , Emulsions/chemistry , Escherichia coli , Particle Size , Anti-Bacterial Agents/pharmacology
17.
Phytomedicine ; 116: 154858, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37224774

ABSTRACT

BACKGROUND: Myricetin (3,5,7-trihydroxy-2-(3,4,5-tri hydroxyphenyl)-4-benzopyrone) is a common flavonol extracted from many natural plants and Chinese herb medicines and has been demonstrated to have multiple pharmacological activities, such as anti-microbial, anti-thrombotic, neuroprotective, and anti-inflammatory effects. Previously, myricetin was reported to target Mpro and 3CL-Pro-enzymatic activity to SARS-CoV-2. However, the protective value of myricetin on SARS-Cov-2 infection through viral-entry facilitators has not yet been comprehensively understood. PURPOSE: The aim of the current study was to evaluate the pharmacological efficacy and the mechanisms of action of myricetin against SARS-CoV-2 infection both in vitro and in vivo. METHODS: The inhibitory effects of myricetin on SARS-CoV-2 infection and replication were assessed on Vero E6 cells. Molecular docking analysis and bilayer interferometry (BLI) assays, immunocytochemistry (ICC), and pseudoviruses assays were performed to evaluate the roles of myricetin in the intermolecular interaction between the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein and angiotensin-converting enzyme 2 (ACE2). The anti-inflammatory potency and mechanisms of myricetin were examined in THP1 macrophages in vitro, as well as in carrageenan-induced paw edema, delayed-type hypersensitivity (DTH) induced auricle edema, and LPS-induced acute lung injury (ALI) animal models. RESULTS: The results showed that myricetin was able to inhibit binding between the RBD of the SARS-CoV-2 S protein and ACE2 through molecular docking analysis and BLI assay, demonstrating its potential as a viral-entry facilitator blocker. Myricetin could also significantly inhibit SASR-CoV-2 infection and replication in Vero E6 cells (EC50 55.18 µM), which was further validated with pseudoviruses containing the RBD (wild-type, N501Y, N439K, Y453F) and an S1 glycoprotein mutant (S-D614G). Moreover, myricetin exhibited a marked suppressive action on the receptor-interacting serine/threonine protein kinase 1 (RIPK1)-driven inflammation and NF-kappa B signaling in THP1 macrophages. In animal model studies, myricetin notably ameliorated carrageenan-induced paw edema in rats, DTH induced auricle edema in mice, and LPS-induced ALI in mice. CONCLUSION: Our findings showed that myricetin inhibited HCoV-229E and SARS-CoV-2 replication in vitro, blocked SARS-CoV-2 virus entry facilitators and relieved inflammation through the RIPK1/NF-κB pathway, suggesting that this flavonol has the potential to be developed as a therapeutic agent against COVID-19.


Subject(s)
COVID-19 , Mice , Rats , Animals , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/chemistry , Molecular Docking Simulation , Carrageenan , Lipopolysaccharides/pharmacology , Protein Binding , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Flavonols/pharmacology
18.
J Biotechnol ; 368: 1-11, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37075954

ABSTRACT

Oplopanax elatus is a valuable medicinal plant, but its plant resource is lacking. Adventitious root (AR) culture of O. elatus is an effective way for the production of plant materials. Salicylic acid (SA) exerts enhancement effect on metabolite synthesis in some plant cell/organ culture systems. To clarify the elicitation effect of SA on fed-batch cultured O. elatus ARs, this study investigated the effects of SA concentration, and elicitation time and duration. Results showed that flavonoid and phenolic contents, and antioxidant enzyme activity obviously increased when the fed-batch cultured ARs were treated with 100 µM SA for 4 days starting on day 35. Under this elicitation condition, total flavonoid and phenolic contents reached 387 rutin mg/g DW and 128 gallic acid mg/g DW, respectively, which were significantly (p < 0.05) higher than those in the SA-untreated control. In addition, DPPH scavenging and ABTS+ scavenging rates, and Fe2+ chelating rate also greatly increased after SA treatment, and their EC50 values were 0.0117, 0.61, and 3.34 mg/L, respectively, indicating the high antioxidant activity. The findings of the present study revealed that SA could be used as an elicitor to improve the flavonoid and phenolic production in fed-batch O. elatus AR culture.


Subject(s)
Flavonoids , Oplopanax , Oplopanax/chemistry , Oplopanax/metabolism , Salicylic Acid/pharmacology , Antioxidants/metabolism , Phenols/chemistry
19.
Phytomedicine ; 115: 154754, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37087790

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung condition with unknown etiology and high mortality. Chinese herbal medicine has been used for more than a thousand years to treat various lung diseases. PURPOSE: The current study aimed to examine whether Chinese herbal Maxing Huoqiao Decoction (MXHQD) exerts therapeutic effects on IPF and to further uncover its underlying molecular mechanisms. METHODS: Mouse model of acute lung injury (ALI) or IPF was induced by intratracheal instillation of LPS or bleomycin, respectively. ALI mice were treated with MXHQD for 7 days, and lung tissues were taken for test after modeling 24 h. IPF mice were gavaged for 21 days after modeling. Lung tissues were subjected to whole transcriptome detection, and the differential RNAs were experimentally verified. RESULTS: The results showed that MXHQD alleviated the computed tomography (CT) and the pathological degree changes in mice with IPF, improved changes in the expression of fibrosis related genes and reduced the hydroxyproline expression in IPF mice. MXHQD also decreased the cell numbers in bronchoalveolar lavage fluids, and the expression levels of the inflammatory factors in the ALI mice lung tissues were significantly inhibited. By applying whole transcriptome analysis, results showed that MXHQD acted on 40 mRNAs, 15 miRNAs, 25 novel lncRNAs and 17 circRNAs to resist pulmonary fibrosis. The competing endogenous RNA (ceRNA) network diagram showed that the multiple components of MXHQD against fibrosis through a network of multiple targets. The differential mRNAs were mainly related to the innate immune response and the defense response to virus. Then the expression of mRNAs in the differential mRNA-miRNA-differential circRNA network in the lung tissue of IPF was verified. The expression of ZBP1 and ISG15 related to immune system and anti virus was verified at both gene and protein expressions. MXHQD could significantly inhibit the elevation of ZBP1 and ISG15 factors induced by the fibrosis model. CONCLUSION: Overall, our findings provide compelling evidence that MXHQD can alleviate IPF by modulating innate immunity. This is the first study to reveal the molecular mechanism underlying the multi-components, multi-channels and multi-targets anti-IPF immune injury of MXHQD, and supports its potential clinical application for IPF.


Subject(s)
Acute Lung Injury , Idiopathic Pulmonary Fibrosis , MicroRNAs , Mice , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Lung/pathology , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Bleomycin , Acute Lung Injury/drug therapy , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , RNA-Binding Proteins/metabolism
20.
Phytomedicine ; 114: 154751, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37004400

ABSTRACT

BACKGROUND: Chronic diseases such as tumors and autoimmune disorders are closely linked to metabolism and immunity and require conflicting treatment methods. AMPK can regulate cell growth and inflammation through energy metabolism. Sinomenine is a compound extracted from the traditional Chinese herb sinomenium acutum (Thunb.) Rehd. et Wils. It has been used to treat NSCLC (non-small-cell lung cancer) and RA (rheumatoid arthritis) in some studies, but with limited understanding of its mechanisms. OBJECTIVE: This study aims to examine the inhibitory effect of sinomenine hydrochloride (SH) on NSCLC and RA and to understand the underlying joint mechanisms. RESULTS: The results indicate that SH has a cytotoxic effect specifically on tumor cells, but not on normal cells. SH was found to induce cell apoptosis by activating the AMPK-mTOR pathway. Additionally, in autoimmune disease cell models, SH was shown to reduce the growth of RA-FLS cells by inhibiting the phosphorylation of AMPK, while having no effect on normal macrophages. Moreover, in vivo studies also showed that SH could reduce the production of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 and slow the development of adjuvant arthritis in rats. Furthermore, SH was found to significantly suppress tumor growth in a tumor xenograft experiment in mice. CONCLUSIONS: This study provides new insights into the treatment of tumors and autoimmune diseases by demonstrating that SH can selectively inhibit the growth of NSCLC cells and the progression of RA through activation of the AMPK pathway.


Subject(s)
Antineoplastic Agents , Arthritis, Rheumatoid , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Rats , Mice , Animals , AMP-Activated Protein Kinases , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Arthritis, Rheumatoid/drug therapy , Antineoplastic Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL