Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Agric Food Chem ; 72(15): 8460-8475, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564364

ABSTRACT

Liver injury and progressive liver failure are severe life-threatening complications in sepsis, further worsening the disease and leading to death. Macrophages and their mediated inflammatory cytokine storm are critical regulators in the occurrence and progression of liver injury in sepsis, for which effective treatments are still lacking. l-Ascorbic acid 6-palmitate (L-AP), a food additive, can inhibit neuroinflammation by modulating the phenotype of the microglia, but its pharmacological action in septic liver damage has not been fully explored. We aimed to investigate L-AP's antisepticemia action and the possible pharmacological mechanisms in attenuating septic liver damage by modulating macrophage function. We observed that L-AP treatment significantly increased survival in cecal ligation and puncture-induced WT mice and attenuated hepatic inflammatory injury, including the histopathology of the liver tissues, hepatocyte apoptosis, and the liver enzyme levels in plasma, which were comparable to NLRP3-deficiency in septic mice. L-AP supplementation significantly attenuated the excessive inflammatory response in hepatic tissues of septic mice in vivo and in cultured macrophages challenged by both LPS and ATP in vitro, by reducing the levels of NLRP3, pro-IL-1ß, and pro-IL-18 mRNA expression, as well as the levels of proteins for p-I-κB-α, p-NF-κB-p65, NLRP3, cleaved-caspase-1, IL-1ß, and IL-18. Additionally, it impaired the inflammasome ASC spot activation and reduced the inflammatory factor contents, including IL-1ß and IL-18 in plasma/cultured superannuants. It also prevented the infiltration/migration of macrophages and their M1-like inflammatory polarization while improving their M2-like polarization. Overall, our findings revealed that L-AP protected against sepsis by reducing macrophage activation and inflammatory cytokine production by suppressing their activation in NF-κB and NLRP3 inflammasome signal pathways in septic liver.


Subject(s)
Inflammasomes , Sepsis , Mice , Animals , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Interleukin-18 , Macrophage Activation , Signal Transduction , Liver/metabolism , Ascorbic Acid , Sepsis/complications , Sepsis/drug therapy , Lipopolysaccharides/pharmacology
2.
Plant Physiol Biochem ; 208: 108503, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38484679

ABSTRACT

Rutin is a significant flavonoid with strong antioxidant property and various therapeutic effects. It plays a crucial role in disease prevention and human health maintenance, especially in anti-inflammatory, antidiabetic, hepatoprotective and cardiovascular effects. While many plants can synthesize and accumulate rutin, tartary buckwheat is the only food crop possessing high levels of rutin. At present, the rutin content (RC) is regarded as the key index for evaluating the nutritional quality of tartary buckwheat. Consequently, rutin has become the focus for tartary buckwheat breeders and has made considerable progress. Here, we summarize research on the rutin in tartary buckwheat in the past two decades, including its accumulation, biosynthesis and breakdown pathways, and regulatory mechanisms. Furthermore, we propose several strategies to increase the RC in tartary buckwheat seeds based on current knowledge. This review aims to provide valuable references for elevating the quality of tartary buckwheat in the future.


Subject(s)
Fagopyrum , Rutin , Humans , Rutin/metabolism , Fagopyrum/metabolism , Biofortification , Flavonoids/metabolism , Metabolic Networks and Pathways
3.
Int J Biol Sci ; 20(2): 680-700, 2024.
Article in English | MEDLINE | ID: mdl-38169582

ABSTRACT

Vascular remodeling plays a vital role in hypertensive diseases and is an important target for hypertension treatment. Irisin, a newly discovered myokine and adipokine, has been found to have beneficial effects on various cardiovascular diseases. However, the pharmacological effect of irisin in antagonizing hypertension-induced vascular remodeling is not well understood. In the present study, we investigated the protection and mechanisms of irisin against hypertension and vascular remodeling induced by angiotensin II (Ang II). Adult male mice of wild-type, FNDC5 (irisin-precursor) knockout, and FNDC5 overexpression were used to develop hypertension by challenging them with Ang II subcutaneously in the back using a microosmotic pump for 4 weeks. Similar to the attenuation of irisin on Ang II-induced VSMCs remodeling, endogenous FNDC5 ablation exacerbated, and exogenous FNDC5 overexpression alleviated Ang II-induced hypertension and vascular remodeling. Aortic RNA sequencing showed that irisin deficiency exacerbated intracellular calcium imbalance and increased vasoconstriction, which was parallel to the deterioration in both ER calcium dysmetabolism and ER stress. FNDC5 overexpression/exogenous irisin supplementation protected VSMCs from Ang II-induced remodeling by improving endoplasmic reticulum (ER) homeostasis. This improvement includes inhibiting Ca2+ release from the ER and promoting the re-absorption of Ca2+ into the ER, thus relieving Ca2+-dependent ER stress. Furthermore, irisin was confirmed to bind to its receptors, αV/ß5 integrins, to further activate the AMPK pathway and inhibit the p38 pathway, leading to vasoprotection in Ang II-insulted VSMCs. These results indicate that irisin protects against hypertension and vascular remodeling in Ang II-challenged mice by restoring calcium homeostasis and attenuating ER stress in VSMCs via activating AMPK and suppressing p38 signaling.


Subject(s)
Angiotensin II , Hypertension , Mice , Male , Animals , Angiotensin II/metabolism , Fibronectins/metabolism , AMP-Activated Protein Kinases/metabolism , Vascular Remodeling , Calcium/metabolism , Muscle, Smooth, Vascular/metabolism , Endoplasmic Reticulum Stress
4.
Medicine (Baltimore) ; 102(35): e34593, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37657038

ABSTRACT

The management of idiopathic granulomatous mastitis (IGM) poses a significant challenge because of its ambiguous etiology. This study aimed to investigate the efficacy of traditional Chinese medicine (TCM) combined with mammotome-assisted minimally invasive surgery (MAMIS) for the treatment of IGM. This retrospective cohort study included patients with IGM who underwent treatment at our hospital between January 2017 and June 2022. Patients treated with Shugan Sanjie decoction alone and preoperative Shugan Sanjie decoction combined with MAMIS were included in Groups A and B, respectively. We focused on the demographics, clinical characteristics, and outcomes of the patients in the 2 groups. A total of 124 female patients with an average age of 33.9 ± 3.6 years were included in the study. The demographic and clinical characteristics of patients in Groups A (n = 55) and B (n = 69) were similar (P > .05). However, there were significant differences between the 2 groups in terms of treatment duration, 1-year complete remission (CR), and recurrence. Group B showed shorter treatment time (11.7 ± 5.1 vs 15.3 ± 6.4 months, P = .001), higher 1-year CR (72.5% vs 45.5%, P = .002), and lower recurrence (7.2% vs 21.8%, P = .019) in comparison to Group A. Shugan Sanjie decoction promoted the shrinkage of breast lesions in patients with IGM. Combined with MAMIS, this treatment regimen shortened the treatment duration, accelerated the recovery process, and reduced the recurrence rate.


Subject(s)
Granulomatous Mastitis , Humans , Female , Adult , Granulomatous Mastitis/drug therapy , Granulomatous Mastitis/surgery , Retrospective Studies , Duration of Therapy , Minimally Invasive Surgical Procedures , Immunoglobulin M
5.
J Ethnopharmacol ; 312: 116483, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37059245

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dingxin Recipe Ⅲ (DXR Ⅲ) is a traditional Chinese medicine compound used for hyperlipidemia treatment in clinical practice. However, its curative effects and pharmacological mechanisms in hyperlipidemia have not been clarified to date. AIM OF THE STUDY: Studies have demonstrated that gut barrier was strongly implicated in lipid deposition. Based on gut barrier and lipid metabolism, this study examined the effects and molecular mechanisms of DXR Ⅲ in hyperlipidemia. MATERIALS AND METHODS: The bioactive compounds of DXR Ⅲ were detected by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and its effects were evaluated in high-fat diet-fed rats. Specifically, the serum levels of lipids and hepatic enzymes were measured using the appropriate kits; colon and liver sections were obtained for histological analyses; gut microbiota and metabolites were analyzed by 16S rDNA sequencing and liquid chromatography-MS/MS; and the expression of genes and proteins was determined by real-time quantitative polymerase chain reaction and western blotting and immunohistochemistry, respectively. The pharmacological mechanisms of DXR Ⅲ were further explored by fecal microbiota transplantation and short-chain fatty acid (SCFAs)-based interventions. RESULTS: DXR Ⅲ treatment significantly downregulated serum lipid levels, mitigated hepatocyte steatosis and improved lipid metabolism. Moreover, DXR Ⅲ improved the gut barrier, specifically by improving the physical barrier in the colon, causing part composition changes in the gut microbiota, and increasing the serum SCFAs level. DXR Ⅲ also upregulated the expression of colon GPR43/GPR109A. Fecal microbiota transplantation from rats treated with DXR Ⅲ downregulated part hyperlipidemia-related phenotypes, while the SCFAs intervention significantly improved most of the hyperlipidemia-related phenotypes and upregulated the expression of GPR43. Moreover, both DXR Ⅲ and SCFAs upregulated the expression of colon ABCA1. CONCLUSION: DXR Ⅲ protects against hyperlipidemia by improving the gut barrier, particularly the SCFAs/GPR43 pathway.


Subject(s)
Hyperlipidemias , Rats , Animals , Hyperlipidemias/drug therapy , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Lipids , Fatty Acids, Volatile/metabolism
6.
Front Nutr ; 9: 987545, 2022.
Article in English | MEDLINE | ID: mdl-36185677

ABSTRACT

Inflammatory immune response plays a key role in exercise-induced injury and healing; however, the relevant regulatory mechanisms of immune infiltration in exercise-induced injuries remain less studied. In the present study, a highly efficient system for screening immunity-related biomarkers and immunomodulatory ability of natural nutritional supplements was developed by integrating intelligent data acquisition, data mining, network pharmacology, and computer-assisted target fishing. The findings demonstrated that resting natural killer cells showed a higher rate of infiltration after exercise, whereas naive B cells and activated dendritic cells showed higher rate of infiltration before exercise. Four key genes, namely PRF1, GZMB, CCL4, and FASLG, were associated with exercise-induced injuries and inflammatory immune response. In total, 26 natural compounds including echinacoside, eugenol, tocopherol, and casuariin were predicted by using the HERB databases. Molecular docking analysis showed that GZMB, FASLG, and CCL4 bound to echinacoside. In vivo experiments in mice showed that after 30 min swimming, natural killer (NK) cells showed high infiltration rates, and the key genes (GZMB, PRF1, FASLG, and CCL4) were highly expressed; however, echinocandin significantly reduced the level of NK cells and decreased the expression of the four key genes post exercise. This natural nutritional supplement may act to protect against inflammatory injury after exercise by suppressing specific immune infiltration.

7.
Phytomedicine ; 106: 154427, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36088791

ABSTRACT

BACKGROUND: Liver dysfunction and liver failure are serious complications of sepsis, directly leading to septic progression and death. Now, there is no specific therapeutics available for sepsis-related liver dysfunction. Prim-O-glucosylcimifugin (POG), a chromone richest in the roots of Saposhnikovia divaricata (Turcz.) Schischk, is usually used to treat headache, rheumatoid arthritis and tetanus. While, the underlying mechanisms of POG against sepsis-induced liver damage and dysfunction are still not clear. PURPOSE: To study the anti-sepsis effect of POG, and its pharmacological mechanism to protect liver injury by weakening the function of macrophages in septic livers through inhibiting NOD-like receptor protein 3 (NLRP3) inflammasome pathway. METHOD: In vivo experiments, septic mouse model was induced by cecal ligation and puncture (CLP), and then the mortality was detected, liver inflammatory damages and plasma biomarkers of liver injury were evaluated by histopathological staining and biochemical assays, respectively. In vitro experiments, mouse primary peritoneal macrophages were treated with lipopolysaccharide (LPS) and ATP, and then the activated-inflammasomes, macrophage migration and polarization were detected by ASC immunofluorescence staining, transwell and flow cytometry assays, respectively. NLRP3 inflammasome components NLRP3, caspase-1, IL-1ß and IL-18 protein expressions were detected using western blot assays, and the contents of IL-1ß and IL-18 were measured by ELISA assays. RESULTS: POG treatment significantly decreased the mortality, liver inflammatory damages, hepatocyte apoptosis and plasma biomarkers of liver injury in CLP-challenged male WT mice, which were comparable to those in ibuprofen (a putative anti-inflammatory drug)-supplemented septic male WT mice and septic NLRP3 deficient-male mice. POG supplementation significantly suppressed NLRP3 inflammasome activation in septic liver tissues and cultured macrophages, by significantly reducing NLRP3, cleaved-caspase-1, IL-1ß and IL-18 levels, the activated-inflammasome ASC specks, and macrophage infiltration and migration, as well as M1-like polarization, but significantly increasing M2-like polarization. These findings were similar to the pharmacological effects of ibuprofen, NLRP3 deficiency, and a special NLRP3 inhibitor, MCC950. CONCLUSION: POG protected against sepsis by inhibiting NLRP3 inflammasome-mediated macrophage activation in septic liver and attenuating liver inflammatory injury, indicating that it may be a potential anti-sepsis drug candidate.


Subject(s)
Inflammasomes , Sepsis , Adenosine Triphosphate , Animals , Caspase 1/metabolism , Chromones , Ibuprofen , Interleukin-18 , Lipopolysaccharides , Liver/metabolism , Macrophages/metabolism , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL