Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Poult Sci ; 102(10): 102986, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37566964

ABSTRACT

Traditional Chinese herbs have been widely researched as a green, safe, and effective feed additive for poultry. The purpose of this study was to investigate the effects of traditional Chinese prescription (TCP) based on various herbs in a specific ratio on the growth performance, carcass traits, immunity, antioxidant level, and intestinal health of Ningdu yellow chickens. A total of 420 female Ningdu yellow chickens were randomly divided into 5 groups, with 6 replicates of 14 each. The chickens were fed with a basal diet supplemented with 0 (CON), 0.2, 0.4, 0.6, or 0.8% TCP from d 43 to 105. Body weight, feed intake, and serum biochemical indicators were recorded at d 70 and 105, intestinal morphology and microflora of the carcass were determined at d 105. Compared to the control group, chickens fed with TCP, particularly at the level of 0.6%, showed improved average daily gain and breast muscle percentage, as well as a lower feed-to-gain ratio with statistical significance (P < 0.05). Between 43 and 70 d of age, chickens fed with TCP exhibited higher levels of serum glutathione peroxidase activity, total antioxidant capacity, and superoxide dismutase, particularly in the group fed with the 0.6% level of TCP (P < 0.05). Between 43 and 105 d of age, feeding chickens with 0.4 and 0.6% TCP resulted in a decrease in serum IL-2 concentration, and increase in the IL-4 content (P < 0.05). Chickens fed with 0.4, 0.6, and 0.8% TCP had significantly higher jejunum villous height (P < 0.05), TCP supplementation also led to a marked increase in the relative abundance of Bacteroidota compared to the control group (P < 0.05). Collectively, the study suggests that TCP supplementation can enhance immune and antioxidant functions, improve jejunum morphology, and positively impact cecum microflora in chickens. Based on these results, a level of 0.6% TCP could be considered an optimum level as a feed supplement for Ningdu yellow chickens aged 43 to 105 d.


Subject(s)
Antioxidants , Chickens , Animals , Female , Chickens/physiology , Animal Feed/analysis , Dietary Supplements , Diet/veterinary
2.
Int J Mol Sci ; 24(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37511309

ABSTRACT

Camellia oleifera a member of the family Theaceae, is a phosphorus (P) tolerator native to southern China. The SPX gene family critically regulates plant growth and development and maintains phosphate (Pi) homeostasis. However, the involvement of SPX genes in Pi signaling in Tea-Oil Camellia remains unknown. In this work, 20 SPX genes were identified and categorized into four subgroups. Conserved domains, motifs, gene structure, chromosomal location and gene duplication events were also investigated in the SPX gene family. Defense and stress responsiveness cis-elements were identified in the SPX gene promoters, which participated in low-Pi stress responses. Based on transcriptome data and qRT-PCR results, nine CoSPX genes had similar expression patterns and eight genes (except CoPHO1H3) were up-regulated at 30 days after exposure to low-Pi stress. CoSPX-MFS3 was selected as a key candidate gene by WGCNA analysis. CoSPX-MFS3 was a tonoplast protein. Overexpression of CoSPX-MFS3 in Arabidopsis promoted the accumulation of total P content and decreased the anthocyanin content. Overexpression of CoSPX-MFS3 could enhance low-Pi tolerance by increased biomass and organic acid contents in transgenic Arabidopsis lines. Furthermore, the expression patterns of seven phosphate starvation genes were higher in transgenic Arabidopsis than those in the wild type. These results highlight novel physiological roles of the SPX family genes in C. oleifera under low-Pi stress, and lays the foundation for a deeper knowledge of the response mechanism of C. oleifera to low-Pi stress.


Subject(s)
Arabidopsis , Camellia , Camellia/genetics , Camellia/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/metabolism , Phosphates/metabolism , Tea , Gene Expression Regulation, Plant , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL