Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Nutr Food Res ; 67(13): e2200800, 2023 07.
Article in English | MEDLINE | ID: mdl-37118903

ABSTRACT

SCOPE: Coenzyme Q10 (CoQ10) has become a popular nutritional supplement due to its wide range of beneficial biological effects. Previous meta-analyses show that the attenuation of CoQ10 on inflammatory biomarkers remains controversial. This meta-analysis aims to assess the efficacy and optimal dose of CoQ10 supplementation on inflammatory indicators in the general population. METHODS AND RESULTS: Databases are searched up to December 2022 resulting in 6713 articles, of which 31 are retrieved for full-text assessment and included 1517 subjects. Double-blind randomized controlled trials (RCTs) of CoQ10 supplementation are eligible if they contain C reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). CoQ10 supplementation can significantly reduce the levels of circulating CRP (SMD: -0.40, 95% CI: [-0.67 to -0.13], p = 0.003), IL-6 (SMD: -0.67, 95% CI: [-1.01 to -0.33], p < 0.001), and TNF-α (SMD: -1.06, 95% CI: [-1.59 to -0.52], p < 0.001) and increase the concentration of circulating CoQ10. CONCLUSION: This meta-analysis provides evidence for CoQ10 supplementation to reduce the level of inflammatory mediators in the general population and proposes that daily supplementation of 300-400 mg CoQ10 show superior inhibition of inflammatory factors.


Subject(s)
Interleukin-6 , Tumor Necrosis Factor-alpha , Humans , Randomized Controlled Trials as Topic , Inflammation/drug therapy , Inflammation/metabolism , Ubiquinone/pharmacology , Biomarkers , C-Reactive Protein/analysis , Dietary Supplements
2.
J Clin Endocrinol Metab ; 108(1): 232-249, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36337001

ABSTRACT

CONTEXT: Previous meta-analyses have suggested that the effects of coenzyme Q10 (CoQ10) on lipid profiles remain debatable. Additionally, no meta-analysis has explored the optimal intake of CoQ10 for attenuating lipid profiles in adults. OBJECTIVE: This study conducted a meta-analysis to determine the effects of CoQ10 on lipid profiles and assess their dose-response relationships in adults. METHODS: Databases (Web of Science, PubMed/Medline, Embase, and the Cochrane Library) were systematically searched until August 10, 2022. The random effects model was used to calculate the mean differences (MDs) and 95% CI for changes in circulating lipid profiles. The novel single-stage restricted cubic spline regression model was applied to explore nonlinear dose-response relationships. RESULTS: Fifty randomized controlled trials with a total of 2794 participants were included in the qualitative synthesis. The pooled analysis revealed that CoQ10 supplementation significantly reduced total cholesterol (TC) (MD -5.53 mg/dL; 95% CI -8.40, -2.66; I2 = 70%), low-density lipoprotein cholesterol (LDL-C) (MD -3.03 mg/dL; 95% CI -5.25, -0.81; I2 = 54%), and triglycerides (TGs) (MD -9.06 mg/dL; 95% CI -14.04, -4.08; I2 = 65%) and increased high-density lipoprotein cholesterol (HDL-C) (MD 0.83 mg/dL; 95% CI 0.01, 1.65; I2 = 82%). The dose-response analysis showed an inverse J-shaped nonlinear pattern between CoQ10 supplementation and TC in which 400-500 mg/day CoQ10 largely reduced TC (χ2 = 48.54, P < .01). CONCLUSION: CoQ10 supplementation decreased the TC, LDL-C, and TG levels, and increased HDL-C levels in adults, and the dosage of 400 to 500 mg/day achieved the greatest effect on TC.


Subject(s)
Dietary Supplements , Adult , Humans , Cholesterol, HDL , Cholesterol, LDL , Randomized Controlled Trials as Topic
3.
Adv Nutr ; 13(6): 2180-2194, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36130103

ABSTRACT

Previous studies have shown beneficial effects of coenzyme Q10 (CoQ10) supplementation on blood pressure (BP). However, the optimal intake of CoQ10 for BP regulation in patients with cardiometabolic disorders is unknown, and its effect on circulating CoQ10 is also unclear. We aimed to assess the dose-response relation between CoQ10 and BP, and quantify the effect of CoQ10 supplementation on the concentration of circulating CoQ10 by synthesizing available evidence from randomized controlled trials (RCTs). A comprehensive literature search was performed in 3 databases (PubMed/MEDLINE, Embase, and Cochrane Library) to 21 March, 2022. A novel 1-stage restricted cubic spline regression model was used to evaluate the nonlinear dose-response relation between CoQ10 and BP. Twenty-six studies comprising 1831 subjects were included in our meta-analysis. CoQ10 supplementation significantly reduced systolic blood pressure (SBP) (-4.77 mmHg, 95% CI: -6.57, -2.97) in patients with cardiometabolic diseases; this reduction was accompanied by a 1.62 (95% CI: 1.26, 1.97) µg/mL elevation of circulating CoQ10 compared with the control group. Subgroup analyses revealed that the effects of reducing SBP were more pronounced in patients with diabetes and dyslipidemia and in studies with longer durations (>12 wk). Importantly, a U-shaped dose-response relation was observed between CoQ10 supplementation and SBP level, with an approximate dose of 100-200 mg/d largely reducing SBP (χ2 = 10.84, Pnonlinearity = 0.004). The quality of evidence was rated as moderate, low, and very low for SBP, diastolic blood pressure (DBP), and circulating CoQ10 according to the Grading of Recommendations, Assessment, Development, and Evaluation approach (GRADE), respectively. The current finding demonstrated that the clinically beneficial effects of CoQ10 supplementation may be attributed to the reduction in SBP, and 100-200 mg/d of CoQ10 supplementation may achieve the greatest benefit on SBP in patients with cardiometabolic diseases. This study was registered on PROSPERO as CRD42021252933.


Subject(s)
Cardiovascular Diseases , Hypertension , Humans , Blood Pressure , Randomized Controlled Trials as Topic , Dietary Supplements , Cardiovascular Diseases/prevention & control , Hypertension/drug therapy
4.
Food Chem Toxicol ; 160: 112811, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34999177

ABSTRACT

Pyroptosis is a new type of programmed cell death associated with inflammation. Excessive pyroptosis can cause body damage. Alliin is an organosulfur compound extracted from garlic, bearing anti-oxidation and anti-inflammatory properties. In this study, we revealed that alliin alleviated LPS-induced macrophage pyroptosis by detecting PI staining, IL-1ß and IL-18 release in vitro and in vivo. In the study of mechanism, we found that alliin might reduce the activation of NLRP3 inflammosome by decreasing intracellular ROS generation. Subsequently, we detected the effect of alliin on mitophagy which degraded damaged mitochondria. The results showed that alliin promoted PINK 1/Parkin-mediated mitophagy. After adding the mitophagy inhibitor CsA, the alleviating effect of alliin on mitochondrial damage and mitochondrial ROS were reversed and the relieving effect of alliin on LPS-induced pyroptosis was inhibited. These results suggested that alliin might reduce intracellular ROS production by promoting mitophagy, thus alleviating LPS-induced macrophages pyroptosis. Our study provides a new perspective and theoretical basis for alliin to alleviate pyroptosis which could further induce body damage.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cysteine/analogs & derivatives , Macrophages/drug effects , Mitophagy/drug effects , Plant Extracts/pharmacology , Pyroptosis/drug effects , Animals , Cysteine/pharmacology , Garlic/chemistry , Inflammasomes/drug effects , Inflammasomes/genetics , Inflammasomes/immunology , Interleukin-18/genetics , Interleukin-18/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Lipopolysaccharides/adverse effects , Macrophages/cytology , Macrophages/immunology , Mice , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Reactive Oxygen Species/immunology
SELECTION OF CITATIONS
SEARCH DETAIL