Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Comb Chem High Throughput Screen ; 27(1): 90-100, 2024.
Article in English | MEDLINE | ID: mdl-37190798

ABSTRACT

INTRODUCTION: Fu-Fang-Jin-Qian-Cao is a Chinese herbal preparation used to treat urinary calculi. Fu-Fang-Jin-Qian-Cao can protect renal tubular epithelial cells from calcium oxalateinduced renal injury by inhibiting ROS-mediated autopathy. The mechanism still needs further exploration. Metabonomics is a new subject; the combination of metabolomics and network pharmacology can find pathways for drugs to act on targets more efficiently. METHODS: Comprehensive metabolomics and network pharmacology to study the mechanism of Fu-Fang-Jin-Qian-Cao inhibiting autophagy in calcium oxalate-induced renal injury. Based on UHPLC-Q-TOF-MS, combined with biochemical analysis, a mice model of Calcium oxalateinduced renal injury was established to study the therapeutic effect of Fu-Fang-Jin-Qian-Cao. Based on the network pharmacology, the target signaling pathway and the protective effect of Fu- Fang-Jin-Qian-Cao on Calcium oxalate-induced renal injury by inhibiting autophagy were explored. Autophagy-related proteins LC3-II, BECN1, ATG5, and ATG7 were studied by immunohistochemistry. RESULTS: Combining network pharmacology and metabolomics, 50 differential metabolites and 2482 targets related to these metabolites were found. Subsequently, the targets enriched in PI3KAkt, MAPK and Ras signaling pathways. LC3-II, BECN1, ATG5 and ATG7 were up-regulated in Calcium oxalate-induced renal injury. All of them could be reversed after the Fu-Fang-Jin-Qian- Cao treatment. CONCLUSIONS: Fu-Fang-Jin-Qian-Cao can reverse ROS-induced activation of the MAPK signaling pathway and inhibition of the PI3K-Akt signaling pathway, thereby reducing autophagy damage of renal tubular epithelial cells in Calcium oxalate-induced renal injury.


Subject(s)
Calcium Oxalate , Drugs, Chinese Herbal , Mice , Animals , Calcium Oxalate/metabolism , Calcium Oxalate/pharmacology , Calcium/metabolism , Chromatography, High Pressure Liquid , Network Pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Kidney/metabolism , Autophagy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/metabolism
2.
J Integr Med ; 12(6): 469-75, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25412664

ABSTRACT

Acute kidney injury is a serious global health problem and determinant of morbidity and mortality. Recent advancements in the field of stem cell research raise hopes for stem cell-based regenerative approaches to treat acute kidney diseases. In this review, the authors summarized the latest research advances of the adult resident renal progenitor cells (ARPCs) on kidney repair, the role of ARPCs on tubular regeneration after acute kidney injury, the current understanding of the mechanisms related to ARPC activation and modulation, as well as the challenges that remain to be faced.


Subject(s)
Acute Kidney Injury/physiopathology , Kidney Tubules/physiopathology , Regeneration/physiology , Stem Cells/physiology , Antigens, CD/metabolism , Drugs, Chinese Herbal/pharmacology , Humans , Kidney/physiopathology , Receptors, CXCR/metabolism , Reperfusion Injury/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL