Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
J Ethnopharmacol ; 328: 118116, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38548118

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY: To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS: The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS: AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-ß-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 µM, 9.05 µM, 3.87 µM, and 7.00 µM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION: Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.


Subject(s)
Aristolochic Acids , Mitochondrial Diseases , Humans , Aristolochic Acids/toxicity , Glucuronides/metabolism , Microsomes, Liver/metabolism , Reactive Oxygen Species/metabolism , Glucuronosyltransferase/metabolism , Kinetics , Catalysis , Uridine Diphosphate/metabolism
2.
Mol Ther Nucleic Acids ; 35(2): 102163, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38545620

ABSTRACT

Anorectal malformations (ARMs) are congenital diseases that lead to postoperative fecal incontinence, constipation, and soiling, despite improvements in surgery; however, their pathological mechanisms remain unclear. Here, we report the role of microRNA-141-3p in maintaining homeostasis between apoptosis and autophagy in the lumbosacral defecation center of fetal rats with ARMs. Elevated microRNA-141-3p expression inhibited YIN-YANG-1 expression by binding its 3' UTR, and repressed autophagy and triggered apoptosis simultaneously. Then, adenylate cyclase 3 was screened to be the downstream target gene of YIN-YANG-1 by chromatin immunoprecipitation sequencing experiments, and Yin Yang 1 could positively activate the transcription of adenylate cyclase 3 by directly interacting with the motif GAGATGG and ATGG in its promoter. Intraamniotic microinjection of adeno-rno-microRNA-141-3p-sponge-GFP in fetal rats with ARMs on embryonic day 15 restored apoptosis-autophagy homeostasis. These findings reveal that microRNA-141-3p upregulation impaired homeostasis between apoptosis and autophagy by inhibiting the YIN-YANG-1/adenylate cyclase 3 axis, and that intraamniotic injection of anti-microRNA-141-3p helped maintain homeostasis in the lumbosacral defecation center of ARMs during embryogenesis.

3.
Sci Rep ; 14(1): 4728, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413668

ABSTRACT

Tea is an indispensable beverage in people's daily life. However, the relationship between tea intake and dental caries and periodontitis is controversial. We extracted datasets for tea intake and oral diseases from genome-wide association studies (GWASs) conducted by the UK Biobank and the Gene Lifestyle Interactions in Dental Endpoints consortium. We selected 38 single-nucleotide polymorphisms (SNPs) significantly associated with tea intake as instrumental variables (IVs) (P < 5.0 × 10-8). Mendelian randomization (MR) was performed to investigate the potential causality between tea intake and caries and periodontitis. Multivariable Mendelian randomization (MVMR) analyses were utilized to estimate causal effects of tea intake on risk of caries and periodontitis after adjusting for smoking, body mass index (BMI), and socioeconomic factors. The results showed that higher tea intake was suggestively associated with fewer natural teeth (ß = - 0.203; 95% CI = 0.680 to 0.980; P = 0.029) and higher risk of periodontitis (OR = 1.622; 95% CI = 1.194 to 2.205; P = 0.002). After Bonferroni correction, the causality of tea intake on periodontitis remained significant. The significance of periodontitis disappeared after adjusting for the socioeconomic factors in MVMR (OR = 1.603; 95% CI = 0.964 to 2.666; P = 0.069). Tea intake had no association with risk of caries. Statistical insignificance of the heterogeneity test and pleiotropy test supported the validity of the MR study. Our results provide insight into the potential relationship between tea intake and oral diseases from a dietary lifestyle perspective, which may help prevent oral diseases.


Subject(s)
Dental Caries , Periodontitis , Humans , Dental Caries/epidemiology , Dental Caries/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Periodontitis/epidemiology , Periodontitis/genetics , Polymorphism, Single Nucleotide , Tea
4.
Regul Pept ; 129(1-3): 227-32, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-15927720

ABSTRACT

Designed zinc finger proteins (ZFPs) regulate expression of target genes when coupled to activator or repressor domains. Transfection of ZFPs into cell lines can create expression systems where the targeted endogenous gene is transcribed and the protein of interest can be investigated in its own cellular context. Here we describe the pharmacological investigation of an expression system generated using CCK2 receptor-selective ZFPs transfected into human embryonic kidney cells (HEKZFP system). The receptors expressed in this system, in response to ZFP expression, were functional in calcium mobilization studies and the potency of the agonists investigated was consistent with their action at CCK2 receptors (CCK-8S pA50 = 9.05+/-0.11, pentagastrin pA50 = 9.11+/-0.13). In addition, binding studies were conducted using [125I]-BH-CCK-8S as radioligand. The saturation binding analysis of this radioligand was consistent with a single population of high affinity CCK receptors (pK(D) = 10.24). Competition studies were also conducted using a number of previously well-characterized CCK-receptor selective ligands; JB93182, YF476, PD-134,308, SR27897, dexloxiglumide, L-365,260 and L-364,718. Overall, the estimated affinity values for these ligands were consistent with their interaction at CCK2 receptors. Therefore, CCK2 receptors up-regulated using zinc finger protein technology can provide an alternative to standard transfection techniques for the pharmacological analysis of compounds.


Subject(s)
Kidney/metabolism , Receptor, Cholecystokinin B/biosynthesis , Transcription Factors/metabolism , Up-Regulation/drug effects , Cell Line , Drug Evaluation, Preclinical/methods , Humans , Kidney/cytology , Ligands , Pharmaceutical Preparations/metabolism , Receptor, Cholecystokinin B/antagonists & inhibitors , Transcription Factors/genetics , Transfection , Up-Regulation/genetics , Zinc Fingers/genetics , Zinc Fingers/physiology
SELECTION OF CITATIONS
SEARCH DETAIL