Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Discov Med ; 36(183): 753-764, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665024

ABSTRACT

BACKGROUND: Dental fluorosis is a discoloration of the teeth caused by the excessive consumption of fluoride. It represents a distinct manifestation of chronic fluorosis in dental tissues, exerting adverse effects on the human body, particularly on teeth. The transmembrane protein 16a (TMEM16A) is expressed at the junction of the endoplasmic reticulum and the plasma membrane. Alterations in its channel activity can disrupt endoplasmic reticulum calcium homeostasis and intracellular calcium ion concentration, thereby inducing endoplasmic reticulum stress (ERS). This study aims to investigate the influence of calcium supplements and TMEM16A on ERS in dental fluorosis. METHODS: C57BL/6 mice exhibiting dental fluorosis were subjected to an eight-week treatment with varying calcium concentrations: low (0.071%), medium (0.79%), and high (6.61%). Various assays, including Hematoxylin and Eosin (HE) staining, immunohistochemistry, real-time fluorescence quantitative polymerase chain reaction (qPCR), and Western blot, were employed to assess the impact of calcium supplements on fluoride content, ameloblast morphology, TMEM16A expression, and endoplasmic reticulum stress-related proteins (calreticulin (CRT), glucose-regulated protein 78 (GRP78), inositol requiring kinase 1α (IRE1α), PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6)) in the incisors of mice affected by dental fluorosis. Furthermore, mice with dental fluorosis were treated with the TMEM16A inhibitor T16Ainh-A01 along with a medium-dose calcium to investigate the influence of TMEM16A on fluoride content, ameloblast morphology, and endoplasmic reticulum stress-related proteins in the context of mouse incisor fluorosis. RESULTS: In comparison to the model mice, the fluoride content in incisors significantly decreased following calcium supplements (p < 0.01). Moreover, the expression of TMEM16A, CRT, GRP78, IRE1α, PERK, and ATF6 were also exhibited a substantial reduction (p < 0.01), with the most pronounced effect observed in the medium-dose calcium group. Additionally, the fluoride content (p < 0.05) and the expression of CRT, GRP78, IRE1α, PERK, and ATF6 (p < 0.01) were further diminished following concurrent treatment with the TMEM16A inhibitor T16Ainh-A01 and a medium dose of calcium. CONCLUSIONS: The supplementation of calcium or the inhibition of TMEM16A expression appears to mitigate the detrimental effects of fluorosis by suppressing endoplasmic reticulum stress. These findings hold implications for identifying potential therapeutic targets in addressing dental fluorosis.


Subject(s)
Calcium , Dietary Supplements , Fluorosis, Dental , Animals , Male , Mice , Activating Transcription Factor 6/metabolism , Adenine/analogs & derivatives , Ameloblasts/metabolism , Ameloblasts/pathology , Ameloblasts/drug effects , Anoctamin-1/metabolism , Anoctamin-1/antagonists & inhibitors , Anoctamin-1/genetics , Calcium/metabolism , Disease Models, Animal , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Fluorides/toxicity , Fluorides/adverse effects , Fluorosis, Dental/pathology , Fluorosis, Dental/metabolism , Fluorosis, Dental/etiology , Indoles , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 902-911, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621897

ABSTRACT

Alzheimer's disease(AD), vascular dementia(VD), and traumatic brain injury(TBI) are more common cognitive impairment diseases characterized by high disability and mortality rates, imposing a heavy burden on individuals and their families. Although AD, VD, and TBI have different specific mechanisms, their pathogenesis is closely related to the nucleotide-binding oligome-rization domain-like receptor protein 3(NLRP3). The NLRP3 inflammasome is involved in neuroinflammatory responses, mediating microglial polarization, regulating the reduction of amyloid ß-protein(Aß) deposition, neurofibrillary tangles(NFTs) formation, autophagy regulation, and maintaining brain homeostasis, and synaptic stability, thereby contributing to the development of AD, VD, and TBI. Previous studies have shown that traditional Chinese medicine(TCM) can alleviate neuroinflammation, promote microglial polarization towards the M2 phenotype, reduce Aß deposition and NFTs formation, regulate autophagy, and maintain brain homeostasis by intervening in NLRP3 inflammasome, hence exerting a role in preventing and treating cognitive impairment-related diseases, reducing psychological and economic pressure on patients, and improving their quality of life. Therefore, this article elucidated the role of NLRP3 inflammasome in AD, VS, and TBI, and provided a detailed summary of the latest research results on TCM intervention in NLRP3 inflammasome for the prevention and treatment of these diseases, aiming to inherit the essence of TCM and provide references and foundations for clinical prevention and treatment of cognitive impairment-related diseases with TCM. Meanwhile, this also offers insights and directions for further research in TCM for the prevention and treatment of cognitive impairment-related diseases.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Amyloid beta-Peptides/metabolism , Medicine, Chinese Traditional , Quality of Life , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control
3.
Heliyon ; 10(7): e28582, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586416

ABSTRACT

The combination of Chaidangbo (CDB) is an antidepressant traditional Chinese medicine (TCM) prescription simplified by Xiaoyaosan (a classic antidepressant TCM prescription) through dismantling research, which has the effect of dispersing stagnated liver qi and nourishing blood in TCM theory. Although the antidepressant effect of CBD has been confirmed in animal studies, the material basis and possible molecular mechanism for antidepressant activity in CBD have not been clearly elucidated. Herein, we investigated the effects and potential mechanisms of CDB antidepressant fraction (petroleum ether fraction of CDB, PEFC) on chronic unpredictable mild stress (CUMS)-induced depression-like behavior in mice using network pharmacology and metabolomics. First, a UPLC-QE/MS was employed to identify the components of PEFC. To extract active ingredients, SwissADME screening was used to the real PEFC components that were found. Potential PEFC antidepressant targets were predicted based on a network pharmacology approach, and a pathway enrichment analysis was performed for the predicted targets. Afterward, a CUMS mouse depression model was established and LC-MS-based untargeted hippocampal metabolomics was performed to identify differential metabolites, and related metabolic pathways. Finally, the protein expressions in mouse hippocampi were determined by Western blot to validate the network pharmacology and metabolomics deduction. A total of 16 active compounds were screened in SwissADME that acted on 73 core targets of depression, including STAT3, MAPKs, and NR3C1; KEGG enrichment analysis showed that PEFC modulated signaling pathways such as PI3K-Akt signaling pathway, endocrine resistance, and MAPK to exert antidepressant effects. PEFC significantly reversed abnormalities of hippocampus metabolites in CUMS mice, mainly affecting the synthesis and metabolism of glycine, serine, and threonine, impacting catecholamine transfer and cholinergic synapses and regulating the activity of the mTOR signaling pathway. Furthermore, Western blot analysis confirmed that PEFC significantly influenced the main protein levels of the PI3K/Akt/mTOR signaling pathways in the hippocampus of mice subjected to CUMS. This study integrated metabolomics, network pharmacology and biological verification to explore the potential mechanism of PEFC in treating depression, which is related to the regulation of amino acid metabolism dysfunction and the activation of PI3K/Akt/mTOR signaling pathways in the hippocampus. The comprehensive strategy also provided a reasonable way for unveiling the pharmacodynamic mechanisms of multi-components, multi-targets, and multi-pathways in TCM with antidepressant effect.

4.
Food Chem ; 446: 138891, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38432135

ABSTRACT

Phyllanthus emblica Linn is not only an edible fruit with high nutritional value, but also a medicinal plant with multiple bioactivities. It is widely used in clinical practice with functions of clearing heat, cooling blood, digesting food, strengthening stomach, promoting fluid production, and relieving cough. This review summarized a wide variety of phytonutrients, including nutritional components (mineral elements, amino acids, vitamins, polysaccharides, unsaturated free fatty acids) and functional components (phenolic acids (1-34), tannins (35-98), flavonoids (99-141), sterols (142-159), triterpenoids (160-175), lignans (176-183), alkaloids (184-197), alkanes (198-212), aromatic micromolecules (213-222), other compounds (223-239)). The isolated compounds and the various extracts of P. emblica Linn presented a diverse spectrum of biological activities such as anti-oxidant, anti-cancer, anti-inflammatory, anti-bacterial, hepatoprotective, hypoglycemic, anti-atherosclerosis, neuroprotective, enhancing immunity, anti-fatigue, anti-myocardial fibrosis. The quality markers of P. emblica Linn were predicted and analyzed based on traditional medicinal properties, traditional efficacy, plant genealogy and chemical component characteristics, biogenic pathway of chemical components, measurability of chemical components, transformation characteristics of polyphenolic components, homologous characteristics of medicine and food, compound compatibility environment, and clinical applications. This review also summarized and prospected applications of P. emblica Linn in beverages, preserved fruits, fermented foods, etc. However, the contents of mechanism, structure-activity relationship, quality control, toxicity, extraction, processing of P. emblica Linn are not clear, and are worth further studies in the future.


Subject(s)
Botany , Phyllanthus emblica , Plants, Medicinal , Phyllanthus emblica/chemistry , Plant Extracts/chemistry , Phytochemicals , Ethnopharmacology
5.
Front Pharmacol ; 15: 1355246, 2024.
Article in English | MEDLINE | ID: mdl-38505420

ABSTRACT

Due to its high prevalence, poor prognosis, and heavy burden on healthcare costs, diabetic vascular complications have become a significant public health issue. Currently, the molecular and pathophysiological mechanisms underlying diabetes-induced vascular complications remain incompletely understood. Autophagy, a highly conserved process of lysosomal degradation, maintains intracellular homeostasis and energy balance via removing protein aggregates, damaged organelles, and exogenous pathogens. Increasing evidence suggests that dysregulated autophagy may contribute to vascular abnormalities in various types of blood vessels, including both microvessels and large vessels, under diabetic conditions. Traditional Chinese medicine (TCM) possesses the characteristics of "multiple components, multiple targets and multiple pathways," and its safety has been demonstrated, particularly with minimal toxicity in liver and kidney. Thus, TCM has gained increasing attention from researchers. Moreover, recent studies have indicated that Chinese herbal medicine and its active compounds can improve vascular damage in diabetes by regulating autophagy. Based on this background, this review summarizes the classification, occurrence process, and related molecular mechanisms of autophagy, with a focus on discussing the role of autophagy in diabetic vascular damage and the protective effects of TCM and its active compounds through the regulation of autophagy in diabetes. Moreover, we systematically elucidate the autophagic mechanisms by which TCM formulations, individual herbal extracts, and active compounds regulate diabetic vascular damage, thereby providing new candidate drugs for clinical treatment of vascular complications in diabetes. Therefore, further exploration of TCM and its active compounds with autophagy-regulating effects holds significant research value for achieving targeted therapeutic approaches for diabetic vascular complications.

6.
J Ethnopharmacol ; 324: 117785, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38262525

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Postpartum depression (PPD) is a common psychiatric disorder in women after childbirth. Per data from epidemiologic studies, PPD affects about 5%-26.32% of postpartum mothers worldwide. Biological factors underlying this condition are multiple and complex and have received extensive inquiries for the roles they play in PPD. Chinese herbal medicine (CHM), which is widely used as a complementary and alternative therapy for neurological disorders, possesses multi-component, multi-target, multi-access, and low side effect therapeutic characteristics. CHM has already shown efficacy in the treatment of PPD, and a lot more research exploring the mechanisms of its potential therapeutic effects is being conducted. AIM OF THE REVIEW: This review provides an in-depth and comprehensive overview of the underlying mechanisms of PPD, as well as samples the progress made in researching the potential role of CHM in treating the disorder. MATERIALS AND METHODS: Literature was searched comprehensively in scholarly electronic databases, including PubMed, Web of Science, Scopus, CNKI and WanFang DATA, using the search terms "postpartum depression", "genetic", "hormone", "immune", "neuroinflammation", "inflammation", "neurotransmitter", "neurogenesis", "brain-gut axis", "traditional Chinese medicine", "Chinese herbal medicine", "herb", and an assorted combination of these terms. RESULTS: PPD is closely associated with genetics, as well as with the hormones, immune inflammatory, and neurotransmitter systems, neurogenesis, and gut microbes, and these biological factors often interact and work together to cause PPD. For example, inflammatory factors could suppress the production of the neurotransmitter serotonin by inducing the regulation of tryptophan-kynurenine in the direction of neurotoxicity. Many CHM constituents improve anxiety- and depression-like behaviors by interfering with the above-mentioned mechanisms and have shown decent efficacy clinically against PPD. For example, Shen-Qi-Jie-Yu-Fang invigorates the neuroendocrine system by boosting the hormone levels of hypothalamic pituitary adrenal (HPA) and hypothalamic pituitary gonadal (HPG) axes, regulating the imbalance of Treg/T-helper cells (Th) 17 and Th1/Th2, and modulating neurotransmitter system to play antidepressant roles. The Shenguiren Mixture interferes with the extracellular signal-regulated kinase (ERK) pathway to enhance the number, morphology and apoptosis of neurons in the hippocampus of PPD rats. Other herbal extracts and active ingredients of CHM, such as Paeoniflorin, hypericin, timosaponin B-III and more, also manage depression by remedying the neuroendocrine system and reducing neuroinflammation. CONCLUSIONS: The pathogenesis of PPD is complex and diverse, with the main pathogenesis not clear. Still, CHM constituents, like Shen-Qi-Jie-Yu-Fang, the Shenguiren Mixture, Paeoniflorin, hypericin and other Chinese Medicinal Formulae, active monomers and Crude extracts, treats PPD through multifaceted interventions. Therefore, developing more CHM components for the treatment of PPD is an essential step forward.


Subject(s)
Anthracenes , Depression, Postpartum , Drugs, Chinese Herbal , Glucosides , Monoterpenes , Perylene/analogs & derivatives , Humans , Female , Animals , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Depression, Postpartum/drug therapy , Medicine, Chinese Traditional , Biological Factors , Neurotransmitter Agents
7.
J Biol Chem ; 299(10): 105243, 2023 10.
Article in English | MEDLINE | ID: mdl-37690683

ABSTRACT

Myosin-7a is an actin-based motor protein essential for vision and hearing. Mutations of myosin-7a cause type 1 Usher syndrome, the most common and severe form of deafblindness in humans. The molecular mechanisms that govern its mechanochemistry remain poorly understood, primarily because of the difficulty of purifying stable intact protein. Here, we recombinantly produce the complete human myosin-7a holoenzyme in insect cells and characterize its biochemical and motile properties. Unlike the Drosophila ortholog that primarily associates with calmodulin (CaM), we found that human myosin-7a utilizes a unique combination of light chains including regulatory light chain, CaM, and CaM-like protein 4. Our results further reveal that CaM-like protein 4 does not function as a Ca2+ sensor but plays a crucial role in maintaining the lever arm's structural-functional integrity. Using our recombinant protein system, we purified two myosin-7a splicing isoforms that have been shown to be differentially expressed along the cochlear tonotopic axis. We show that they possess distinct mechanoenzymatic properties despite differing by only 11 amino acids at their N termini. Using single-molecule in vitro motility assays, we demonstrate that human myosin-7a exists as an autoinhibited monomer and can move processively along actin when artificially dimerized or bound to cargo adaptor proteins. These results suggest that myosin-7a can serve multiple roles in sensory systems such as acting as a transporter or an anchor/force sensor. Furthermore, our research highlights that human myosin-7a has evolved unique regulatory elements that enable precise tuning of its mechanical properties suitable for mammalian auditory functions.


Subject(s)
Actins , Deaf-Blind Disorders , Myosin VIIa , Humans , Actins/metabolism , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Myosin VIIa/genetics , Myosin VIIa/metabolism , Calmodulin/metabolism , Calcium-Binding Proteins/metabolism
8.
Animals (Basel) ; 13(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37627386

ABSTRACT

Imidacloprid (IMI) is an endogenous neonicotinoid insecticide widely used in agriculture and has attracted researchers' attention because of its risks to the environment and human health. Melatonin (MT) is an antioxidant hormone produced by the pineal gland of the brain. Studies have shown that it has a variety of physiological functions and plays a crucial role in the development of animal germ cells and embryos. The potential protective effects of MT against oocyte damage caused by neonicotinoid pesticide toxicity remain unclear. In this study, we report the toxicity of IMI against, and its effects on the quality of, porcine oocytes and the protective effect of MT on IMI-exposed oocytes. The results show that IMI exposure adversely affected oocyte maturation, while MT supplementation ameliorated its toxic effects. Specifically, IMI exposure increased oxidative stress (OS), endoplasmic reticulum stress (ERS), and apoptosis, which may affect polar body expulsion rates and blastocyst formation. Also, IMI exposure reduced oocyte cleavage rates and the number of cells in blastocysts. However, all of these toxic effects can be restored after a melatonin supplementation treatment. In conclusion, these results suggest that melatonin has a protective effect on IMI-induced defects during porcine oocyte maturation.

9.
Fitoterapia ; 170: 105663, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37652268

ABSTRACT

A novel discovery of two hybrid benzodioxepin-dalbergiphenol epimers, named cochindalbergiphenols A-B (1-2), and a benzofuran-dalbergiphenol hybrid, named cochindalbergiphenol C (3), were isolated and identified from the heartwood of Dalbergia cochinchinensis. The structures of all the isolated compounds were identified through NMR and HRESIMS techniques, while the absolute configurations were determined by comparing the experimental and calculated ECD spectra. Compounds 1-3 exhibited potential protective effects against hypoxia/reoxygenation (H/R) induced injury in H9c2 cells.


Subject(s)
Dalbergia , Molecular Structure , Dalbergia/chemistry , Plant Extracts/chemistry , Magnetic Resonance Spectroscopy
10.
Food Chem Toxicol ; 179: 113952, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37481226

ABSTRACT

Black Phosphorus Quantum Dots (BP-QDs) have potential applications in biomedicine. BP-QDs may enter the body through the respiratory tract during grinding and crushing production and processing, causing respiratory toxicity. Ferroptosis is an oxidative, iron-dependent form of cell death. Here, respiratory toxicity of BP-QDs has been validated in mice and human bronchial epithelial cells. After 24 h of exposure to different doses (4-32 µg/mL) of BP-QDs, intracellular lipid peroxidation and iron overload occurred in Beas-2B cells. After 4 times exposures by noninvasive tracheal instillation at four doses [0, 0.25, 0.5 and 1 (mg/kg/48h)], all animals were sacrificed, organs were removed, processed for pathological examination and molecular analysis. Iron overload, glutathione (GSH) depletion and lipid peroxidation in the lung tissue of mice in the exposure group. Furthermore, based on the ferroptosis-associated protein and mRNA expression, it was hypothesized that BP-QDs induced ferroptosis through increasing intracellular free iron and polyunsaturated fatty acid synthesis. By comparing with previous studies, we speculate that primary cells generally are more sensitive to BP-QDs-induced damage than cancer cells. In summary, findings in the present study confirmed that BP-QDs induce ferroptosis via increasing lipid peroxidation and iron accumulation in vitro and in vivo.


Subject(s)
Ferroptosis , Iron Overload , Quantum Dots , Mice , Humans , Animals , Lipid Peroxidation , Ferroptosis/physiology , Phosphorus , Iron/metabolism , Lung/metabolism
11.
Mol Immunol ; 160: 133-149, 2023 08.
Article in English | MEDLINE | ID: mdl-37429064

ABSTRACT

Jing-Fang powder ethyl acetate extract (JFEE) and its isolated C (JFEE-C) possess favorable anti-inflammatory and anti-allergic properties; however, their inhibitory effects on T cell activity remain unknown. In vitro, Jurkat T cells and primary mouse CD4+ T cells were used to explore the regulatory effects of JFEE and JFEE-C as well as their potential mechanisms on activated T cells. Furthermore, T cell-mediated atopic dermatitis (AD) mouse model was established to confirm these inhibitory effects in vivo. The results showed that JFEE and JFEE-C inhibited T cell activation by suppressing the production of interleukin-2 (IL-2) and interferon-gamma (IFN-γ) without showing cytotoxicity. Flow cytometry showed the inhibitory effects of JFEE and JFEE-C on the activation-induced proliferation and apoptosis of T cells. Pretreatment with JFEE and JFEE-C also decreased the expression levels of several surface molecules, including CD69, CD25, and CD40L. Moreover, it was confirmed that JFEE and JFEE-C inhibited T cell activation by downregulating the TGF-ß-activated kinase 1 (TAK1)/nuclear kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathways. The combination of these extracts with C25-140 intensified the inhibitory effects on IL-2 production and p65 phosphorylation. The oral administration of JFEE and JFEE-C notably weakened AD manifestations, including the infiltration of mast cells and CD4+ cells, epidermis and dermis thicknesses, serum levels of immunoglobulin E (IgE) and thymic stromal lymphopoietin (TSLP), and gene expression levels of T helper (Th) cells-related cytokines in vivo. The underlying mechanisms of the inhibitory effects of JFEE and JFEE-C on AD were related to attenuating T cell activity through NF-κB/MAPK pathways. In conclusion, this study suggested that JFEE and JFEE-C exhibited anti-atopic efficacy by attenuating T cell activity and might possess a curative potential for T cell-mediated diseases.


Subject(s)
Dermatitis, Atopic , Animals , Mice , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/chemically induced , Interleukin-2 , Powders/adverse effects , Powders/metabolism , NF-kappa B/metabolism , Cytokines/metabolism , CD4-Positive T-Lymphocytes/metabolism , Mice, Inbred BALB C , Plant Extracts/pharmacology
12.
Molecules ; 28(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37513319

ABSTRACT

To prevent local tumor recurrence caused by possible residual cancer cells after surgery, avoid toxicity of systemic chemotherapy and protect the fragile immune system of postsurgical patients, an increasing amount of attention has been paid to local anti-cancer drug delivery systems. In this paper, golden buckwheat was first applied to prevent post-operative tumor recurrence, which is a Chinese herb and possesses anti-tumor activity. Golden buckwheat extract-loaded gellan gum injectable hydrogels were fabricated via Ca2+ crosslinking for localized chemotherapy. Blank and/or drug-loaded hydrogels were characterized via FT-IR, TG, SEM, density functional theory, drug release and rheology studies to explore the interaction among gellan gum, Ca2+ and golden buckwheat extract (GBE). Blank hydrogels were non-toxic to NIH3T3 cells. Of significance, GBE and GBE-loaded hydrogel inhibited the proliferation of tumor cells (up to 90% inhibition rate in HepG2 cells). In vitro hemolysis assay showed that blank hydrogel and GBE-loaded hydrogel had good blood compatibility. When GBE-loaded hydrogel was applied to the incompletely resected tumor of mice bearing B16 tumor xenografts, it showed inhibition of tumor growth in vivo and induced the apoptosis of tumor cells. Taken together, gellan gum injectable hydrogel containing GBE is a potential local anticancer drug delivery system for the prevention of postsurgical tumor recurrence.


Subject(s)
Antineoplastic Agents , Fagopyrum , Humans , Animals , Mice , Hydrogels , Neoplasm, Residual , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/prevention & control , NIH 3T3 Cells , Spectroscopy, Fourier Transform Infrared , Cell Line, Tumor , Antineoplastic Agents/therapeutic use
13.
Pharmacol Res ; 193: 106804, 2023 07.
Article in English | MEDLINE | ID: mdl-37244386

ABSTRACT

Herbal organic compounds (HOCs) are bioactive natural products from medicinal plants and some traditional Chinese medicines (TCMs). Recently, ingestion of a few HOCs with low bioavailability has been associated with alterations in gut microbiota, but the extent of this phenomenon remains unclear. Here, we systematically screened 481 HOCs against 47 representative gut bacterial strains in vitro and found that almost one-third of the HOCs exhibited unique anticommensal activity. Quinones showed a potent anticommensal activity, while saturated fatty acids exhibited stronger inhibition of the Lactobacillus genus. Flavonoids, phenylpropanoids, terpenoids, triterpenoids, alkaloids and phenols displayed weaker anticommensal activity, but steroids, saccharides and glycosides had hardly any effect on strain growth. Notably, S-configuration HOCs demonstrated stronger anticommensal activity than R-configuration HOCs. The strict screening conditions ensured high accuracy (95%) through benchmarking validation. Additionally, the effects of HOCs on human fecal microbiota profiling were positively correlated with their anticommensal activity against bacterial strains. Molecular and chemical features such as AATS3i and XLogP3 were correlated with the anticommensal activity of the HOCs in the random forest classifier. Finally, we validated that curcumin, a polyhydric phenol with anticommensal activity, improved insulin resistance in HFD mice by modulating the composition and metabolic function of gut microbiota. Our results systematically mapped the profile of HOCs directly affecting human gut bacterial strains, offering a resource for future research on HOC-microbiota interaction, and broadening our understanding of natural product utilization through gut microbiota modulation.


Subject(s)
Alkaloids , Plants, Medicinal , Humans , Mice , Animals , Bacteria , Terpenes , Flavonoids/pharmacology , Phenols
14.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1043-1053, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872275

ABSTRACT

This paper aimed to study the effect of Dalbergia cochinchinensis heartwood on plasma endogenous metabolites in rats with ligation of the left anterior descending coronary artery, and to analyze the mechanism of D. cochinchinensis heartwood in improving acute myocardial ischemic injury. The stability and consistency of the components in the D. cochinchinensis heartwood were verified by the establishment of fingerprint, and 30 male SD rats were randomly divided into a sham group, a model group, and a D. cochinchinensis heartwood(6 g·kg~(-1)) group, with 10 rats in each group. The sham group only opened the chest without ligation, while the other groups established the model of ligation. Ten days after administration, the hearts were taken for hematoxylin-eosin(HE) staining, and the content of heart injury indexes in the plasma creatine kinase isoenzyme(CK-MB) and lactate dehydrogenase(LDH), energy metabolism-related index glucose(Glu) content, and vascular endothelial function index nitric oxide(NO) was determined. The endogenous metabolites were detected by ultra-high-performance liquid chromatography-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS). The results showed that the D. cochinchinensis heartwood reduced the content of CK-MB and LDH in the plasma of rats to relieve myocardial injury, reduced the content of Glu in the plasma, improved myocardial energy metabolism, increased the content of NO, cured the vascular endothelial injury, and promoted vasodilation. D. cochinchinensis heartwood improved the increase of intercellular space, myocardial inflammatory cell infiltration, and myofilament rupture caused by ligation of the left anterior descending coronary artery. The metabolomic study showed that the content of 26 metabolites in the plasma of rats in the model group increased significantly, while the content of 27 metabolites decreased significantly. Twenty metabolites were significantly adjusted after the administration of D. cochinchinensis heartwood. D. cochinchinensis heartwood can significantly adjust the metabolic abnormality in rats with ligation of the left anterior descending coronary artery, and its mechanism may be related to the regulation of cardiac energy metabolism, NO production, and inflammation. The results provide a corresponding basis for further explaining the effect of D. cochinchinensis on the acute myocardial injury.


Subject(s)
Dalbergia , Heart Injuries , Myocardial Ischemia , Male , Animals , Rats , Rats, Sprague-Dawley , Metabolomics , Heart , Creatine Kinase, MB Form
15.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1066-1075, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872277

ABSTRACT

This paper aimed to explore the antidepressant effect of the essential oil from Schizonepeta tenuifolia Briq.(EOST) on the treatment of depression and its mechanism by using a combination of network pharmacology and the mouse model of lipopolysaccharide(LPS)-induced depression. The chemical components in EOST were identified using gas chromatography-mass spectrometer(GC-MS), and 12 active components were selected as the study objects. The targets related to EOST were obtained by Traditional Chinese Medicines Systems Pharmacology(TCMSP) and SwissTargetPrediction database. The targets related to depression were screened out through GeneCards, Therapeutic Target Database(TTD), and Online Mendelian Inheritance in Man(OMIM) database. The Venny 2.1 was applied to screen out the common targets of EOST and depression. The targets were imported into Cytoscape 3.7.2 to generate "drug-active component-diease-target" network diagram. The protein-protein interaction(PPI) network was constructed using STRING 11.5 database and Cytoscape 3.7.2, and the core targets were screened out. DAVID 6.8 database was used for Gene Ontology(GO) func-tional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and subsequently the enrichment results were visualized through the bioinformatics platform. The mouse model of depression was induced by intraperitoneally injecting with LPS in mice. Before modeling, mice were administrated orally with EOST. The antidepressant effect of EOST was evalua-ted by tail suspension test(TST), forced swimming test(FST), and novelty suppressed feeding test(NSFT) after modeling. The content of interleukin(IL)-1ß was determined by enzyme-linked immunosorbent assay(ELISA), and the protein expression levels of IL-1ß and pro IL-1ß in the hippocampus were determined by Western blot. There were 12 main components and 179 targets in EOAT, of which, 116 targets were related to depression, mainly involved in neuroactive ligand-receptor interaction, calcium signaling pathway, and cyclic adenosine monophosphate(cAMP) signaling pathway. Biological processes such as synaptic signal transduction, G-protein coupled receptor signaling pathway, and chemical synaptic transmission were involved. Molecular functions such as neurotransmitter receptor activity, RNA polymerase Ⅱ transcription factor activity, and heme binding were involved. In mice experiments, the results showed that EOST at 100 mg·kg~(-1) and 50 mg·kg~(-1) significantly shortened the immobility time in TST and FST as well as the feeding latency in NSFT compared with the model group, decreased the levels of serum IL-1ß and NO, and reduced the protein expression levels of IL-1ß and pro IL-1ß in the hippocampus. In conclusion, EOST shows a good antidepressant effect in a multi-component, multi-target, and multi-pathway manner. The mechanism may be attributed to the fact that EOST can down-regulate the protein expression levels of IL-1ß and pro IL-1ß, decrease the release of inflammatory factors, and reduce neuroinflammation response.


Subject(s)
Oils, Volatile , Animals , Mice , Depression , Lipopolysaccharides , Network Pharmacology , Databases, Genetic , Calcium Signaling , Disease Models, Animal
16.
Nano Lett ; 23(5): 1904-1913, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36801829

ABSTRACT

Cancer vaccines have received tremendous attention in cancer immunotherapy due to their capability to induce a tumor-specific immune response. However, their effectiveness is compromised by the insufficient spatiotemporal delivery of antigens and adjuvants in the subcellular level to induce a robust CD8+ T cell response. Herein, a cancer nanovaccine G5-pBA/OVA@Mn is prepared through multiple interactions of manganese ions (Mn2+), benzoic acid (BA)-modified fifth generation polyamidoamine (G5-PAMAM) dendrimer, and the model protein antigen ovalbumin (OVA). In the nanovaccine, Mn2+ not only exerts a structural function to assist OVA loading as well as its endosomal escape, but works as an adjuvant of stimulator of interferon genes (STING) pathway. These collaboratively facilitate the orchestrated codelivery of OVA antigen and Mn2+ into cell cytoplasm. Vaccination with G5-pBA/OVA@Mn not only shows a prophylactic effect, but also significantly inhibits growth against B16-OVA tumors, indicating its great potential for cancer immunotherapy.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Humans , Animals , Mice , Manganese , Antigens , Adjuvants, Immunologic/therapeutic use , Neoplasms/therapy , Immunotherapy , Mice, Inbred C57BL , Nanoparticles/chemistry , Dendritic Cells
17.
Cell ; 186(2): 398-412.e17, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36669474

ABSTRACT

Public health studies indicate that artificial light is a high-risk factor for metabolic disorders. However, the neural mechanism underlying metabolic modulation by light remains elusive. Here, we found that light can acutely decrease glucose tolerance (GT) in mice by activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) innervating the hypothalamic supraoptic nucleus (SON). Vasopressin neurons in the SON project to the paraventricular nucleus, then to the GABAergic neurons in the solitary tract nucleus, and eventually to brown adipose tissue (BAT). Light activation of this neural circuit directly blocks adaptive thermogenesis in BAT, thereby decreasing GT. In humans, light also modulates GT at the temperature where BAT is active. Thus, our work unveils a retina-SON-BAT axis that mediates the effect of light on glucose metabolism, which may explain the connection between artificial light and metabolic dysregulation, suggesting a potential prevention and treatment strategy for managing glucose metabolic disorders.


Subject(s)
Adipose Tissue, Brown , Hypothalamus , Mice , Animals , Humans , Adipose Tissue, Brown/metabolism , Hypothalamus/metabolism , Thermogenesis/physiology , Retina , Retinal Ganglion Cells , Glucose/metabolism
18.
Fitoterapia ; 164: 105357, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36460204

ABSTRACT

Two new flavonoid glycosides scutelikiosides A and B (13 and 23), along with twenty-one known compounds from the 75% ethanol extract of roots of Scutellaria likiangensis Diels. Their structures were determined by the comprehensive analyses of the spectroscopic data (1D NMR, 2D NMR, HRESIMS, and CD) and physicochemical properties. Compounds 4-14, 17-19, 21, and 22 were evaluated for their in vivo antimalarial activities against Plasmodium yoelii BY265RFP in mice. Compound 17 exhibited significant activity close to artemisinin with an inhibition ratio of 29.2%, and compounds 6, 9-12, 14, 18, 19, and 22 exhibited moderate antimalarial activities with inhibition ratios ranging from 10.2% to 20.0% at a dose of 25 mg/kg/day. In addition, a summary of preliminary structure-activity relationship of isolated flavonoids for in vivo antimalarial activity was described.


Subject(s)
Antimalarials , Scutellaria , Mice , Animals , Flavonoids/chemistry , Antimalarials/pharmacology , Scutellaria/chemistry , Molecular Structure , Glycosides/pharmacology
19.
J Reprod Dev ; 69(1): 10-17, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36403957

ABSTRACT

Dihydromyricetin (DHM), a dihydroflavonoid compound, exhibits a variety of biological activities, including antitumor activity. However, the effects of DHM on mammalian reproductive processes, especially during early embryonic development, remain unclear. In this study, we added DHM to porcine zygotic medium to explore the influence and underlying mechanisms of DHM on the developmental competence of parthenogenetically activated porcine embryos. Supplementation with 5 µM DHM during in vitro culture (IVC) significantly improved blastocyst formation rate and increased the total number of cells in porcine embryos. Further, DHM supplementation also improved glutathione levels and mitochondrial membrane potential; reduced natural reactive oxygen species levels in blastomeres and apoptosis rate; upregulated Nanog, Oct4, SOD1, SOD2, Sirt1, and Bcl2 expression; and downregulated Beclin1, ATG12, and Bax expression. Collectively, DHM supplementation regulated oxidative stress during IVC and could act as a potential antioxidant during in vitro porcine oocytes maturation.


Subject(s)
Blastocyst , Oocytes , Female , Pregnancy , Swine , Animals , Oocytes/metabolism , Blastocyst/metabolism , Oxidative Stress , In Vitro Oocyte Maturation Techniques/veterinary , Reactive Oxygen Species/metabolism , Embryonic Development , Dietary Supplements , Mammals/metabolism
20.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6624-6634, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38212022

ABSTRACT

Carthami Flos, as a traditional blood-activating and stasis-resolving drug, possesses anti-tumor, anti-inflammatory, and immunomodulatory pharmacological activities. Flavonoid glycosides are the main bioactive components in Carthamus tinctorius. Glycosyltransferase deserves to be studied in depth as a downstream modification enzyme in the biosynthesis of active glycoside compounds. This study reported a flavonoid glycosyltransferase CtUGT49 from C. tinctorius based on the transcriptome data, followed by bioinformatic analysis and the investigation of enzymatic properties. The open reading frame(ORF) of the gene was 1 416 bp, encoding 471 amino acid residues with the molecular weight of about 52 kDa. Phylogenetic analysis showed that CtUGT49 belonged to the UGT73 family. According to in vitro enzymatic results, CtUGT49 could catalyze naringenin chalcone to the prunin and choerospondin, and catalyze phloretin to phlorizin and trilobatin, exhibiting good substrate versatility. After the recombinant protein CtUGT49 was obtained by hetero-logous expression and purification, the enzymatic properties of CtUGT49 catalyzing the formation of prunin from naringenin chalcone were investigated. The results showed that the optimal pH value for CtUGT49 catalysis was 7.0, the optimal temperature was 37 ℃, and the highest substrate conversion rate was achieved after 8 h of reaction. The results of enzymatic kinetic parameters showed that the K_m value was 209.90 µmol·L~(-1) and k_(cat) was 48.36 s~(-1) calculated with the method of Michaelis-Menten plot. The discovery of the novel glycosyltransferase CtUGT49 is important for enriching the library of glycosylation tool enzymes and provides a basis for analyzing the glycosylation process of flavonoid glycosides in C. tinctorius.


Subject(s)
Carthamus tinctorius , Chalcones , Carthamus tinctorius/genetics , Carthamus tinctorius/chemistry , Phylogeny , Flavonoids/analysis , Glycosides/analysis , Glycosyltransferases/genetics , Anti-Inflammatory Agents
SELECTION OF CITATIONS
SEARCH DETAIL