Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Funct Plant Biol ; 50(9): 724-735, 2023 09.
Article in English | MEDLINE | ID: mdl-37544656

ABSTRACT

The effects of sulfate on the zinc (Zn) bioaccumulation characteristics and photophysiological mechanisms of the ornamental plant Hydrocotyle vulgaris were explored using a hydroponic culture under three Zn concentrations (300, 500 and 700mgL-1 ) with (400µmolL-1 ) or without the addition of sulfate. Results showed that: (1) tissue Zn concentrations and total Zn contents increased with increasing hydroponic culture Zn concentrations; and sulfate addition decreased Zn uptake and translocation from roots to shoots; (2) Zn exposure decreased photosynthetic pigment synthesis, while sulfate changed this phenomenon, especially for chlorophyll a under 300mgL-1 Zn treatment; (3) Zn exposure decreased photosynthetic function, while sulfate had positive effects, especially on the photosynthetic rate (Pn ) and stomatal conductance (Gs ); and (4) chlorophyll fluorescence parameters related to light energy capture, transfer and assimilation were generally downregulated under Zn stress, while sulfate had a positive effect on these processes. Furthermore, compared to photosynthetic pigment synthesis and photosynthesis, chlorophyll fluorescence was more responsive, especially under 300mgL-1 Zn treatment with sulfate addition. In general, Zn stress affected photophysiological processes at different levels, while sulfate decreased Zn uptake, translocation, and bioaccumulation and showed a positive function in alleviating Zn stress, ultimately resulting in plant growth promotion. All of these results provide a theoretical reference for combining H. vulgaris with sulfate application in the bioremediation of Zn-contaminated environments at the photophysiological level.


Subject(s)
Centella , Zinc , Zinc/pharmacology , Chlorophyll , Chlorophyll A/pharmacology , Sulfates/pharmacology , Plant Leaves , Photosynthesis
2.
Environ Monit Assess ; 195(6): 771, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37254025

ABSTRACT

In this paper, nine strains of salt-tolerant petroleum-degrading bacteria were applied to an biological aerated filter. Simulating the degradation of high-salinity petroleum wastewater with n-hexadecane and 2,4-ditert-butylphenol as the primary pollutants and analyzing the structure of the biofilm at various salt concentrations. According to the results, when the salinity was 4%, the COD removal efficiency reached 74.34%. Various halotolerant microorganisms have adapted to various salt concentrations. At a salinity of 3%, n-hexadecane exhibited the best degradation effect, with a rate of 83.21%. Shewanella, Acinetobacter, and Marinobacter were the predominant bacterial groups at the time. At 4% salinity, Acinetobacter and Pseudomonas were the predominant bacteria, and the average 2,4-ditert-butylphenol degradation rate was the highest at 63.02%. This study provided an experimental basis for further studying the biological treatment of high-salinity petroleum wastewater.


Subject(s)
Environmental Pollutants , Petroleum , Petroleum/analysis , Environmental Pollutants/metabolism , Wastewater , Biodegradation, Environmental , Environmental Monitoring , Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL