Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Ethnopharmacol ; 328: 117863, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38325670

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The JinChan YiShen TongLuo (JCYSTL) formula, a traditional Chinese medicine (TCM), has been used clinically for decades to treat diabetic nephropathy (DN). TCM believes that the core pathogenesis of DN is "kidney deficiency and collateral obstruction," and JCYSTL has the effect of "tonifying kidney and clearing collateral," thus alleviating the damage to kidney structure and function caused by diabetes. From the perspective of modern medicine, mitochondrial damage is an important factor in DN pathogenesis. Our study suggests that the regulation of mitophagy and mitochondrial function by JCYSTL may be one of the internal mechanisms underlying its good clinical efficacy. AIM OF THE STUDY: This study aimed to investigate the mechanisms underlying the renoprotective effects of JCYSTL. MATERIALS AND METHODS: Unilateral nephrectomy combined with low-dose streptozotocin intraperitoneally injected in a DN rat model and high glucose (HG) plus hypoxia-induced HK-2 cells were used to explore the effects of JCYSTL on the HIF-1α/mitophagy pathway, mitochondrial function and apoptosis. RESULTS: JCYSTL treatment significantly decreased albuminuria, serum creatinine, blood urea nitrogen, and uric acid levels and increased creatinine clearance levels in DN rats. In vitro, medicated serum containing JCYSTL formula increased mitochondrial membrane potential (MMP); improved activities of mitochondrial respiratory chain complexes I, III, and IV; decreased the apoptotic cell percentage and apoptotic protein Bax expression; and increased anti-apoptotic protein Bcl-2 expression in HG/hypoxia-induced HK-2 cells. The treatment group exhibited increased accumulation of PINK1, Parkin, and LC3-II and reduced P62 levels in HG/hypoxia-induced HK-2 cells, whereas in PINK1 knockdown HK-2 cells, JCYSTL did not improve the HG/hypoxia-induced changes in Parkin, LC3-II, and P62. When mitophagy was impaired by PINK1 knockdown, the inhibitory effect of JCYSTL on Bax and its promoting effect on MMP and Bcl-2 disappeared. The JCYSTL-treated group displayed significantly higher HIF-1α expression than the model group in vivo, which was comparable to the effects of FG-4592 in DN rats. PINK1 knockdown did not affect HIF-1α accumulation in JCYSTL-treated HK-2 cells exposed to HG/hypoxia. Both JCYSTL and FG-4592 ameliorated mitochondrial morphological abnormalities and reduced the mitochondrial respiratory chain complex activity in the renal tubules of DN rats. Mitochondrial apoptosis signals in DN rats, such as increased Bax and Caspase-3 expression and apoptosis ratio, were weakened by JCYSTL or FG-4592 administration. CONCLUSION: This study demonstrates that the JCYSTL formula activates PINK1/Parkin-mediated mitophagy by stabilizing HIF-1α to protect renal tubules from mitochondrial dysfunction and apoptosis in diabetic conditions, presenting a promising therapy for the treatment of DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Drugs, Chinese Herbal , Mitochondrial Diseases , Rats , Animals , Diabetic Nephropathies/pathology , bcl-2-Associated X Protein , Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Ubiquitin-Protein Ligases/metabolism , Hypoxia , Protein Kinases/metabolism
2.
Pharm Biol ; 61(1): 1222-1233, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37565668

ABSTRACT

CONTEXT: Diabetic nephropathy (DN) is the main cause of end-stage renal disease. Modified Shen-Yan-Fang-Shuai formula (M-SYFSF) has excellent clinical efficacy in treating diabetic kidney disease. However, the potential mechanism of M-SYFSF remains unknown. OBJECTIVE: To investigate the mechanism of M-SYFSF against DN by network pharmacological analysis and biological experiments. MATERIALS AND METHODS: Utilizing a web-based pharmacology database, the potential mechanisms of M-SYFSF against DN were identified. In vivo experiments, male SD rats were injected with streptozotocin (50 mg/kg) and got uninephrectomy to construct a model of DN. M-SYFSF (11.34 g/kg/d) was gavaged once per day for 12 weeks after model establishment. In vitro experiments, human proximal tubular cells (HK-2) were performed with advanced glycation end-products (AGEs) (100 µg/mL), then intervened with M-SYFSF freeze-dried powder. Pathological staining, WB, IHC, ELISA were conducted to explore the mechanism of M-SYFSF against DN. RESULTS: Network pharmacological analysis showed that MAPK pathway was the potential pathway. Results showed that compared with the Model group, M-SYFSF significantly reduced 24h urine albumin, UACR, and serum creatinine levels (54.90 ± 26.67 vs. 111.78 ± 4.28, 8.87 ± 1.69 vs. 53.94 ± 16.01, 11.56 ± 1.70 vs. 118.70 ± 49.57, respectively), and improved renal pathological changes. Furthermore, the intervention of M-SYFSF reduced the expression of pro-inflammatory cytokines and inhibited the activation of MAPK pathway in AGEs-treated HK-2 cells. DISCUSSION AND CONCLUSION: M-SYFSF is likely to reduce inflammation in DN by inhibiting the MAPK pathway. It provides a theoretical basis for the clinical application of M-SYFSF in the treatment of DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Drugs, Chinese Herbal , Rats , Male , Humans , Animals , Diabetic Nephropathies/metabolism , Network Pharmacology , Rats, Sprague-Dawley , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Glycation End Products, Advanced/metabolism
3.
J Diabetes Res ; 2021: 1010268, 2021.
Article in English | MEDLINE | ID: mdl-34926696

ABSTRACT

Diabetic nephropathy (DN) is a progressive microvascular diabetic complication. Growing evidence shows that persistent mitochondrial dysfunction contributes to the progression of renal diseases, including DN, as it alters mitochondrial homeostasis and, in turn, affects normal kidney function. Pharmacological regulation of mitochondrial networking is a promising therapeutic strategy for preventing and restoring renal function in DN. In this review, we have surveyed recent advances in elucidating the mitochondrial networking and signaling pathways in physiological and pathological contexts. Additionally, we have considered the contributions of nontraditional therapy that ameliorate mitochondrial dysfunction and discussed their molecular mechanism, highlighting the potential value of nontraditional therapies, such as herbal medicine and lifestyle interventions, in therapeutic interventions for DN. The generation of new insights using mitochondrial networking will facilitate further investigations on nontraditional therapies for DN.


Subject(s)
Antioxidants/therapeutic use , Diabetic Nephropathies/therapy , Drugs, Chinese Herbal/therapeutic use , Kidney/drug effects , Mitochondria/drug effects , Oxidative Stress/drug effects , Risk Reduction Behavior , Animals , Antioxidants/adverse effects , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Drugs, Chinese Herbal/adverse effects , Humans , Kidney/metabolism , Kidney/pathology , Mitochondria/metabolism , Mitochondria/pathology , Reactive Oxygen Species/metabolism , Signal Transduction , Treatment Outcome
4.
Oxid Med Cell Longev ; 2021: 2074610, 2021.
Article in English | MEDLINE | ID: mdl-34956436

ABSTRACT

OBJECTIVE: Rhizoma Coptidis is an herb that has been frequently used in many traditional formulas for the treatment of diabetic mellitus (DM) over thousands of years. Berberine, the main active component of Rhizoma Coptidis, has been demonstrated to have the potential effect of hypoglycemia. To determine the potential advantages of berberine for diabetic care, we conducted this systematic review and meta-analysis to examine the efficacy and safety of berberine in the treatment of patients with type 2 DM. METHODS: Eight databases including PubMed, Embase, Web of Science, the Cochrane library, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Database (SinoMed), Wanfang Database, and Chinese VIP Information was searched for randomized controlled trials (RCTs) reporting clinical data regarding the use of berberine for the treatment of DM. Publication qualities were also considered to augment the credibility of the evidence. Glycemic metabolisms were the main factors studied, including glycosylated hemoglobin (HbA1c), fasting plasm glucose (FPG), and 2-hour postprandial blood glucose (2hPG). Insulin resistance was estimated by fasting blood insulin (FINS), homeostasis model assessment-insulin resistance (HOMA-IR), and body mass index (BMI). Lipid profiles were also assessed, including triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), along with inflammation factors such as C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Serum creatinine (Scr), blood urea nitrogen (BUN), and adverse events were applied to evaluate the safety of berberine. RESULTS: Forty-six trials were assessed. Analysis of berberine applied alone or with standard diabetic therapies versus the control group revealed significant reductions in HbA1c (MD = -0.73; 95% CI (-0.97, -0.51)), FPG (MD = -0.86, 95% CI (-1.10, -0.62)), and 2hPG (MD = -1.26, 95% CI (-1.64, -0.89)). Improved insulin resistance was assessed by lowering FINS (MD = -2.05, 95% CI (-2.62, -1.48)), HOMA-IR (MD = -0.71, 95% CI (-1.03, -0.39)), and BMI (MD = -1.07, 95% CI (-1.76, -0.37)). Lipid metabolisms were also ameliorated via the reduction of TG (MD = -0.5, 95% CI (-0.61, -0.39)), TC (MD = 0.64, 95% CI (-0.78, -0.49)), and LDL (MD = 0.86, 95% CI (-1.06, -0.65)) and the upregulation of HDL (MD = 0.17, 95% CI (0.09, 0.25)). Additionally, berberine improved the inflammation factor. CONCLUSION: There is strong evidence supporting the clinical efficacy and safety of berberine in the treatment of DM, especially as an adjunctive therapy. In the future, this may be used to guide targeted clinical use of berberine and the development of medications seeking to treat patients with T2DM and dyslipidemia.


Subject(s)
Berberine/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Berberine/pharmacology , Humans , Randomized Controlled Trials as Topic
5.
Front Med (Lausanne) ; 8: 719950, 2021.
Article in English | MEDLINE | ID: mdl-34604258

ABSTRACT

Evidence indicates that the metabolic inflammation induced by gut microbiota dysbiosis contributes to diabetic kidney disease. Prebiotic supplementations to prevent gut microbiota dysbiosis, inhibit inflammatory responses, and protect the renal function in DKD. Qing-Re-Xiao-Zheng formula (QRXZF) is a Traditional Chinese Medicine (TCM) formula that has been used for DKD treatment in China. Recently, there are growing studies show that regulation of gut microbiota is a potential therapeutic strategy for DKD as it is able to reduce metabolic inflammation associated with DKD. However, it is unknown whether QRXZF is effective for DKD by regulating of gut microbiota. In this study, we investigated the reno-protective effect of QRXZF by exploring its potential mechanism between gut microbiota and downstream inflammatory pathways mediated by gut-derived lipopolysaccharide (LPS) in the kidney. High-fat diet (HFD) and streptozotocin injection-induced DKD mice model was established to assess the QRXZF effect in vivo. Mice treated with QRXZF for 8 weeks had significantly lower levels of urinary albumin, serum cholesterol and triglycerides. The renal injuries observed through histological analysis were attenuated as well. Also, mice in the QRXZF group had higher levels of Zonula occludens protein-1 (ZO-1) expression, lower levels of serum fluorescein-isothiocyanate (FITC)-dextran and less-damaged colonic mucosa as compared to the DKD group, implying the benefit role for the gut barrier integrity. QRXZF treatment also reversed gut dysbiosis and reduced levels of gut-derived LPS. Notably, the expression of toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB), which are important inflammation pathways in DKD, were suppressed in the QRXZF groups. In conclusion, our results indicated that the reno-protective effects of QRXZF was probably associated with modulating gut microbiota and inhibiting inflammatory responses in the kidney.

6.
Front Pharmacol ; 12: 675406, 2021.
Article in English | MEDLINE | ID: mdl-34040535

ABSTRACT

Background: Treatment for adult patients with refractory idiopathic membranous nephropathy (RIMN) by conventional immunosuppressive regimens is not satisfactory. This study aims to evaluate the effectiveness of Chinese herbal medicine, Shulifenxiao formula, as a promising regimen. Methods: A total of 31 RIMN patients resistant to corticosteroid or immunosuppressive agents were retrospectively analyzed. Shulifenxiao treatment lasted a minimum of 12°months in all patients and extended to 24°months in 11 patients. The primary outcomes [the complete remission (CR) and partial remission (PR)] and secondary outcomes (the serum creatinine and estimated glomerular filtration rate (eGFR) levels) were measured at 6, 12, 18, and 24°months. Results: The data provided an average follow-up of 21 ± 9.16°months from baseline. The remission was attained in 25/31 patients (80.7%: CR 29.0% and PR 51.6%) at 12°months and in 10/11 patients (90.9%: CR 54.6% and PR 36.4%) at 24°months, respectively. Proteinuria reduced from 6.02 g/d at baseline to 0.98 g/d at 12°months (p < 0.001) and to 0.27 g/d at 24°months (p = 0.003); serum albumin increased from 28 g/L to 37.2 g/L at 12°months (p < 0.001) and to 41.3 g/L at 24°months (p = 0.003); eGFR improved from 100.25 ml/min/1.73 m2 to 118.39 ml/min/1.73 m2 at 6°months (p < 0.001) and finally to 111.62 ml/min/1.73 m2at 24°months (p = 0.008). Only two patients developed subsequent relapse. Conclusion: Shulifenxiao formula as a clinical cocktail therapy serves as an alternative therapeutic option for steroid and immunosuppressant-resistant RIMN patients, with a favourable safety profile, though further studies are warranted. Clinical Trial registration: http://www.chictr.org.cn, Chinese Clinical Trials Registry [ChiCTR1800019351].

7.
Front Pharmacol ; 12: 801094, 2021.
Article in English | MEDLINE | ID: mdl-35222012

ABSTRACT

Hypertensive renal injury is a complication of hypertension. Cordyceps cicadae (C. cicadae) is a traditional Chinese medicine used to treat chronic kidney diseases especially renal fibrosis. Autophagy is described as a cell self-renewal process that requires lysosomal degradation and is utilized for the maintenance of cellular energy homeostasis. The present study explores the mechanism underlying C. cicadae's renoprotection on hypertensive nephropathy (HN). First, HN rat models were established on spontaneously hypertensive rats (SHRs). The expression of fibrosis-related protein and autophagy-associated protein was detected in vivo. NRK-52E cells exposed to AngII were chosen to observe the potential health benefits of C. cicadae on renal damage. The level of extracellular matrix accumulation was detected using capillary electrophoresis immunoquantification and immunohistochemistry. After treatment with lysosomal inhibitors (chloroquine) or an autophagy activator (rapamycin), the expression of Beclin-1, LC3II, and SQSTM1/p62 was further investigated. The study also investigated the change in sirtuin1 (SIRT1), fork head box O3a (FOXO3a), and peroxidation (superoxide dismutase (SOD) and malondialdehyde (MDA)) expression when intervened by resveratrol. The changes in SIRT1 and FOXO3a were measured in patients and the SHRs. Here, we observed that C. cicadae significantly decreased damage to renal tubular epithelial cells and TGFß1, α-smooth muscle actin (α-SMA), collagen I (Col-1), and fibronectin expression. Meanwhile, autophagy defects were observed both in vivo and in vitro. C. cicadae intervention significantly downregulated Beclin-1 and LC3II and decreased SQSTM1/p62, showing an inhibition of autophagic vesicles and the alleviation of autophagy stress. These functions were suppressed by rapamycin, and the results were just as effective as the resveratrol treatment. HN patients and the SHRs exhibited decreased levels of SIRT1 and FOXO3a. We also observed a positive correlation between SIRT1/FOXO3a and antifibrotic effects. Similar to the resveratrol group, the expression of SIRT1/FOXO3a and oxidative stress were elevated by C. cicadae in vivo. Taken together, our findings show that C. cicadae ameliorates tubulointerstitial fibrosis and delays HN progression. Renoprotection was likely attributable to the regulation of autophagic stress mediated by the SIRT1 pathway and achieved by regulating FOXO3a and oxidative stress.

8.
Crit Rev Food Sci Nutr ; 61(4): 577-598, 2021.
Article in English | MEDLINE | ID: mdl-32329633

ABSTRACT

This systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to quantify the effects of probiotic, prebiotic, and synbiotic supplementation on biomarkers of inflammation and oxidative stress, as well as lipid profiles among patients with chronic kidney disease (CKD). Electronic databases, including PubMed, the Cochrane Database, and the Web of Science were searched from January 1, 2000, to May 15, 2019. All RCTs that investigated the effect of prebiotics, probiotics, and synbiotics on a circulating (serum and plasma) inflammatory marker (C-reactive protein [CRP]), oxidative stress indicators (malondialdehyde [MDA], glutathione [GSH], and total anti-oxidant capacity [TAC]); and lipid profiles (total cholesterol [TC], triglycerides [TG], low-density lipoprotein cholesterol [LDL-c], and high-density lipoprotein cholesterol [HDL-c]) among patients with CKD were included. Data were pooled and expressed as a standardized mean difference (SMD) with a 95% confidence interval (CI). The protocol for this meta-analysis is registered with PROSPERO; No. CRD42019139090. Thirteen trials that included 671 patients were identified for analysis. The methodological quality varied across studies. Meta-analysis indicated that microbial therapies significantly reduced CRP (SMD, -0.75; 95% CI, -1.03 to -0.47; p = 0.000), MDA (SMD, -1.06; 95% CI, -1.59 to -0.52; p = 0.000), TC (SMD, -0.33; 95% CI, -0.52 to -0.13; p = 0.000), and LDL-c (SMD, -0.44; 95% CI, -0.86 to -0.02; p = 0.000) levels; they also increased the GSH (SMD, 0.44; 95% CI, 0.25 to 0.65; p = 0.000), TAC (SMD, 0.61; 95% CI, 0.07 to 1.15; p = 0.000), and HDL-c (SMD, 0.45; 95% CI, 0.03 to 0.87; p = 0.000) levels in CKD patients, as compared to the placebo groups; however, there was no statistically significant TG concentration among patients with CKD. Subgroup analyses showed that other key factors, such as the duration of intervention, participants' baseline body mass index (BMI), type of intervention, and age, had an effect of microbial therapies on outcomes. This meta-analysis supports the potential use of probiotic, prebiotic, and synbiotic supplements in the improvement of established biomarkers of inflammation and oxidative stress, as well as lipid profiles among patients with CKD, which are well-known cardiovascular risk factors. Further research into these interventions should consider the limitations of our study to explore the effect of long-term administration of these supplements in the CKD population.


Subject(s)
Probiotics , Renal Insufficiency, Chronic , Synbiotics , Dietary Supplements , Humans , Metabolome , Prebiotics , Randomized Controlled Trials as Topic , Renal Insufficiency, Chronic/therapy
9.
Front Pharmacol ; 11: 837, 2020.
Article in English | MEDLINE | ID: mdl-32714182

ABSTRACT

Hyperlipidemia is common, and its renal toxicity has attracted a great deal of attention. Si-miao-yong-an (SMYA) is a famous ancient decoction of traditional Chinese medicine (TCM), which is still widely used in clinical treatment. In this study, we observed and explored its efficacy and mechanism in protecting renal function in an atherosclerosis model. The results showed that the serum, Cr urinal KIM-1, and NGAL were significantly decreased in SMYA group. Although SMYA failed to alleviate the lipid accumulation, decrease p-NFκB, or increase SOD in kidney tissue, the levels of ubiquitinated protein and P62 were decreased in SMYA group. What is more, a higher LC3 II level was observed in the SMYA group. In conclusion, these data indicated that SMYA decoction may protect renal function in hyperlipidemia via regulating the autophagy-mediated degradation of ubiquitinated protein.

10.
Article in English | MEDLINE | ID: mdl-32419819

ABSTRACT

Hypertensive renal injury is a primary etiology of end-stage renal disease, and satisfactory therapeutic strategies are urgently required. Cordyceps cicadae, a traditional Chinese herb, has potential renoprotective benefits and is widely used in the treatment of many kidney diseases. To investigate the mechanisms underlying the renoprotective effect of C. cicadae on hypertensive renal injury, we studied the effect of C. cicadae on tubular epithelial cells (TECs) in a spontaneously hypertensive rat (SHR) model and angiotensin II- (AngII-) cultured primary TECs. Our study showed that C. cicadae treatment could decrease 24-hour urine albumin, albumin-to-creatinine ratio (ACR), ß2-MG level, and kidney injury molecule-1 (kim-1) level in SHR urine, alleviate interstitial fibrosis, and reduce α-smooth muscle actin (α-SMA) expression in SHR kidney. In primary TECs, medicated serum containing C. cicadae (CSM) might significantly reduce the AngII-induced production of kim-1 and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, C. cicadae treatment could decrease TEC apoptosis in SHRs as assessed by the terminal transferase-mediated biotin dUTP nick-end labeling (TUNEL) assay. CSM could inhibit caspase-3 activity and enhance cellular viability as measured by methyl thiazolyl tetrazolium in AngII-cultured TECs, suggesting that CSM might reduce the apoptosis level in TECs induced by AngII. We found that the SIRT1 expression level was markedly lowered, while the protein level of acetylated-p53 was elevated in the TECs of patients with hypertensive renal injury and SHRs. C. cicadae presented the effect of regulating the SIRT1/p53 pathway. Further SIRT1 inhibition with EX527 reversed the effect of C. cicadae on AngII-induced apoptosis. Taken together, our results indicate that C. cicadae offers a protective effect on TECs under hypertensive conditions, which may be related to its antiapoptotic effect through regulation of the SIRT1/p53 pathway.

11.
Biomed Pharmacother ; 121: 109599, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31707345

ABSTRACT

Diabetic nephropathy (DN) is a common but intractable diabetic microvascular complication. Tripterygium, a Chinses herb, has been proven to be effective for DN treatment. In this review, the efficacy and pharmacological mechanism of tripterygium and its extracts on DN is elucidated. Tripterygium and its extracts could effectively reduce urine protein and protect renal function. Its pharmacological mechanism involves anti-inflammation, anti-oxidation, anti-glomerulosclerosis and anti-fibrosis, which is achieved by balancing the Th1/Th2 cells, regulating macrophage infiltration, and regulating the following pathways: p38 MAPK, NF-κB, TGF-ß, Wnt/ß-catenin, Akt and Notch1. Although tripterygium and its extracts may result in some adverse effects, including liver-function damage, gastrointestinal reaction, menstrual disorders, and reproductive problems, they are considered good alternative medicines for DN if used with caution and in the proper manner.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Plant Extracts/therapeutic use , Tripterygium , Animals , Clinical Trials as Topic/methods , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Treatment Outcome
12.
Front Microbiol ; 11: 564376, 2020.
Article in English | MEDLINE | ID: mdl-33408699

ABSTRACT

Obesity and related metabolic disorders are associated with intestinal microbiota dysbiosis, disrupted intestinal barrier and chronic inflammation. Shen-Yan-Fang-Shuai formula (SYFSF) is a traditional Chinese herbal formula composed of Astragali Radix, Radix Angelicae Sinensis, Rheum Officinale Baill, and four other herbs. In this study, we identified that SYFSF treatment prevented weight gain, low-grade inflammation and insulin resistance in high-fat diet (HFD)-fed mice. SYFSF also substantially improved gut barrier function, reduced metabolic endotoxemia, as well as systemic inflammation. Sequencing of 16S rRNA genes obtained from fecal samples demonstrated that SYFSF attenuated HFD-induced gut dysbiosis, seen an decreased Firmicutes to Bacteroidetes ratios. Microbial richness and diversity were also higher in the SYFSF-treated HFD group. Furthermore, similar therapeutic effects and changes in gut microbiota profile caused by SYFSF could be replicated by fecal microbiota transfer (FMT). Taken together, our study highlights the efficacy of SYFSF in preventing obesity and related metabolic disorders. Its therapeutic effect is associated with the modulation of gut microbiota, as a prebiotic.

13.
Article in English | MEDLINE | ID: mdl-31281401

ABSTRACT

Diabetic kidney disease (DKD) is a global pandemic, and microinflammation has been reported as an important pathogenic factor of DKD. Traditional Chinese Medicine (TCM) has been used in the treatment of DKD for thousands of years, and modern Chinese medicine studies have found that herbal medicines with heat-clearing property have a curative anti-inflammation effect in DKD. This article reviews the new clinical and experimental progress made in herbal medicines with heat-clearing property, in the treatment of DKD, as well as their safety aspects.

14.
J Diabetes Res ; 2019: 2981705, 2019.
Article in English | MEDLINE | ID: mdl-31179339

ABSTRACT

Diabetic nephropathy (DN) is a serious kidney-related complication of type 1 and type 2 diabetes. The Chinese herbal formula Baoshenfang (BSF) shows therapeutic potential in attenuating oxidative stress and apoptosis in podocytes in DN. This study evaluated the effects of BSF on podocyte injury in vivo and in vitro and explored the possible involvement of the nicotinamide adenine dinucleotide phosphate-oxidase-4/reactive oxygen species- (NOX-4/ROS-) activated p38 pathway. In the identified compounds by mass spectrometry, some active constituents of BSF were reported to show antioxidative activity. In addition, we found that BSF significantly decreased 24-hour urinary protein, serum creatinine, and blood urea nitrogen in DN patients. BSF treatment increased the nephrin expression, alleviated oxidative cellular damage, and inhibited Bcl-2 family-associated podocyte apoptosis in high-glucose cultured podocytes and/or in diabetic rats. More importantly, BSF also decreased phospho-p38, while high glucose-mediated apoptosis was blocked by p38 mitogen-activated protein kinase inhibitor in cultured podocytes, indicating that the antiapoptotic effect of BSF is p38 pathway-dependent. High glucose-induced upexpression of NOX-4 was normalized by BSF, and NOX-4 siRNAs inhibited the phosphorylation of p38, suggesting that the activated p38 pathway is at least partially mediated by NOX-4. In conclusion, BSF can decrease proteinuria and protect podocytes from injury in DN, in part through inhibiting the NOX-4/ROS/p38 pathway.


Subject(s)
Diabetic Nephropathies/drug therapy , Drugs, Chinese Herbal/pharmacology , NADPH Oxidase 4/metabolism , Podocytes/drug effects , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Aged , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Diabetic Nephropathies/metabolism , Female , Humans , Kidney/metabolism , Male , Middle Aged , Oxidative Stress , Podocytes/cytology , Proteinuria/metabolism , Rats , Rats, Sprague-Dawley , Single-Blind Method
15.
Pharmacol Res ; 142: 303-313, 2019 04.
Article in English | MEDLINE | ID: mdl-30794924

ABSTRACT

The role of gut microbiota in the management of diabetes has been shown. Several current trials are investigating the effect of probiotics and prebiotics, which are widely used to modulate intestinal microbiota, on inflammatory factors and biomarkers of oxidative stress in diabetic patients; however, their findings are controversial. The aim of the current meta-analysis was to evaluate the effects of probiotic and synbiotic supplementation on levels of serum high-sensitivity C-reactive protein (hs-CRP) and biomarkers of oxidative stress in diabetic patients. We searched the PubMed, Web of Science, and The Cochrane Library databases from the inception to October 31, 2018. Randomized controlled trials (RCTs) which reported the effect of probiotics or synbiotics on circulating (serum and plasma) inflammatory marker (hs-CRP) and oxidative stress indicators (malondialdehyde [MDA], glutathione [GSH], nitric oxide [NO], and total antioxidant capacity [TAC]) among patients with diabetes were included. Eligible studies were assessed for risk of bias and subjected to qualitative and quantitative synthesis using either fixed- or random-effects models accounting for clinical heterogeneity. Our meta-analysis identified 16 eligible RCTs (n = 1060). The methodological quality varied across these trials. Pooled data from these trials demonstrated that probiotic and synbiotic consumption significantly decreased hs-CRP level (standardized mean difference [SMD]=-0.38; 95% confidence interval [CI]:-0.51,-0.24; P = 0.000) and MDA (SMD=-0.61; 95% CI: -0.89, -0.32; P = 0.000) in diabetic patients compared to those in subjects receiving placebos. In addition, probiotic and symbiotic supplementation was found to increase TAC (SMD = 0.31; 95% CI: 0.09, 0.52; P = 0.006), NO (SMD, 0.62; 95% CI, 0.25 to 0.99; P = 0.001) and GSH (SMD = 0.41; 95% CI: 0.26, 0.55, P = 0.000) levels. The results of this systematic review and meta-analysis suggest that probiotic and synbiotic supplementation may help to improve biomarkers of inflammation and oxidative stress in diabetic patients. Further studies are needed to develop clinical practice guidelines for the management of inflammation and oxidative stress in these patients.


Subject(s)
Diabetes Mellitus/metabolism , Dietary Supplements , Probiotics/therapeutic use , Synbiotics , Biomarkers/metabolism , Humans , Inflammation/metabolism , Oxidative Stress , Randomized Controlled Trials as Topic
16.
Article in English | MEDLINE | ID: mdl-31949466

ABSTRACT

Chronic kidney disease (CKD) is a worldwide health problem for which effective therapeutic methods are still lacking. Traditional Chinese medicine (TCM) has been indicated as an effective alternative treatment for kidney disease. In this study, a clinically effective therapy, yiqihuoxue (YQHX) formula, was administrated to adenine-induced kidney disease rats for 6 weeks. We found that the adenine rats displayed a significant reduction in renal function as evidenced by the increased levels of serum creatinine (Scr), blood urea nitrogen (BUN), and 24-h urinary albumin level, which were attenuated by the YQHX treatment. The glomerulosclerosis, interstitial fibrosis, arteriolosclerosis, interstitial inflammation, and tubular dilatation were reversed by the YQHX treatment in the adenine rats. Furthermore, the hepatic damage characterized by increased levels of aspartate aminotransferase and alanine aminotransferase and inflammatory cell infiltration was improved by YQHX. In addition, the number of apoptotic cells in the adenine rats was obviously reduced by the YQHX treatment as manifested by the lower expression level of cleaved caspase-3 protein. Moreover, the YQHX treatment downregulated the expression levels of fibronectin, type I collagen, α-smooth muscle actin, and TGF-ß1 in the adenine rats. Furthermore, autophagy was activated by the YQHX treatment, which manifested as an increased LC3-II and Beclin-1 expression levels and a decreased p62 level. In conclusion, the YQHX formula might retard the progression of kidney disease by activating autophagy.

17.
Trials ; 19(1): 389, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-30016983

ABSTRACT

BACKGROUND: Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus and the primary cause of end-stage renal disease. Existing therapies for DKD are not sufficiently effective. We report the protocol of a pragmatic randomized controlled trial of the use of traditional Chinese herbal medicine to treat patients with DKD. METHODS/DESIGN: This will be a multicenter randomized controlled trial. A total of 266 patients with DKD (106 with early stage, 80 with middle-stage, and 80 with advanced-stage disease) with an estimated glomerular filtration rate (eGFR) ≥ 30 mL/min/1.73m2will be included. Participants with DKD of each stage will be randomly allocated at a 1:1 ratio to either the experimental group, which will receive Xiaozhen formula and basic treatment, or the control group, which will receive basic treatment only. The study duration will be 24 weeks. The primary outcome will be urinary microalbumin excretion rate for early stage DKD, 24-h urinary protein for middle-stage DKD, and eGFR for advanced-stage DKD. Adverse events will also be evaluated. Data for all outcome indicators will be collected at baseline and weeks 4, 12, and 24. DISCUSSION: This study will provide evidence of the effectiveness and safety of traditional Chinese herbal medicine in treating patients with DKD. TRIAL REGISTRATION: Chinese Clinical Trials Registry: ChiCTR-IOR-16010072 . Registered on 2 December 2016.


Subject(s)
Albuminuria/drug therapy , Diabetic Nephropathies/drug therapy , Drugs, Chinese Herbal/therapeutic use , Glomerular Filtration Rate/drug effects , Kidney/drug effects , Adult , Aged , Albuminuria/diagnosis , Albuminuria/physiopathology , Beijing , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/physiopathology , Drugs, Chinese Herbal/adverse effects , Female , Humans , Kidney/physiopathology , Male , Middle Aged , Multicenter Studies as Topic , Prospective Studies , Randomized Controlled Trials as Topic , Time Factors , Treatment Outcome
18.
Front Physiol ; 9: 1939, 2018.
Article in English | MEDLINE | ID: mdl-30719008

ABSTRACT

It has been reported that autophagic stress, which is involved in many diseases, plays a key role in the development of diabetic nephropathy (DN). In this study, we investigated the effects of high dose vitamin E on renal tubular epithelial cells and autophagic stress-related mechanisms in diabetes condition. In diabetic rats, high dose vitamin E treatment significantly decreased the serum creatinine, urea nitrogen, urinary albumin and urinary protein, reduced the levels of LCN2, HAVCR1, LDH and 8-OHdG in urine, and attenuated the cellular apoptosis and interstitial fibrosis in renal cortex. In vitro, vitamin E could reduce the release of LCN2 and HAVCR1 and the protein levels of caspase 3 and TGF-ß1, as well as improve the growth inhibition in cultured HK-2 cells after exposure to advanced glycation end products (AGEs). Also, LC3-II and SQSTM1-positive dots were significantly increased in the renal tubular epithelial cells of DN patients and diabetic rats, and in HK-2 cells after exposure to AGEs, which were markedly declined by vitamin E. In addition, we found that the autophagosome formation was not affected by AGEs, as assessed by the mRNA levels of LC3B, Beclin-1, and ATG7. However, AGEs blocked the lysosomal degradation of autophagosome, which was characterized by a decrease in the enzymatic activity of cathepsin B/cathepsin L and DQ-ovalbumin degradation in HK-2 cells, indicating that AGEs-induced accumulation of autophagic vacuoles was a sign of autophagic stress. Interestingly, vitamin E exerted a protective effect on lysosomes to reduce the autophagic stress. Taken together, we conclude that autophagic stress may play an important part in the progression of DN, and alleviation of autophagic stress though improvement of lysosomal function provides a promising novel approach for treating DN.

19.
J Diabetes Res ; 2017: 4319057, 2017.
Article in English | MEDLINE | ID: mdl-28713834

ABSTRACT

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and satisfactory therapeutic strategies have not yet been established. The Shen-Yan-Fang-Shuai Formula (SYFSF) is a traditional Chinese formula composed of Astragali radix, Radixangelicae sinensis, Rheum officinale Baill, and four other herbs. It has been widely used as an effective treatment for DKD patients in China. However, little is known about the molecular mechanisms underlying SYFSF's renoprotection. In this study, we compared the protective effect of SYFSF to irbesartan on the histology and renal cells in type 2 DKD rat model and high-glucose (HG) cultured mesangial cells, respectively. We found that SYFSF could significantly decrease urinary albumin, cholesterol, and triglyceride. And a decrease in serum creatinine was also found in SYFSF-treated group compared with irbesartan-treated rats. In addition, SYFSF inhibited the interstitial expansion and glomerulosclerosis in diabetic rats. Notably, SYFSF markedly downregulated the expression of MCP-1, TGF-ß1, collagen IV, and fibronectin in diabetic rat models and HG-induced mesangial cell models. The renoprotection was closely associated with a reduced expression of TNF-α and phosphorylated NF-κBp65. Our study suggests that SYFSF may ameliorate diabetic kidney injury. The observed renoprotection is probably attributable to an inhibition of inflammatory response and extracellular matrix (ECM) accumulation mediated by TNF-α/NF-κBp65 signaling pathway.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Drugs, Chinese Herbal/pharmacology , Kidney/drug effects , NF-kappa B/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Albuminuria/drug therapy , Albuminuria/metabolism , Animals , Cell Line , Creatinine/blood , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Drugs, Chinese Herbal/therapeutic use , Kidney/metabolism , Male , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Rats , Rats, Wistar , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL