ABSTRACT
Adsorption materials are a cost-effective and simple method for oil spill remediation, but their efficiency is limited by high crude oil viscosity. Additionally, non-degradable materials pose another risk of secondary pollution, such as microplastic debris. Here, an environmentally-friendly stereo-complex polylactide composite (SCC) aerogel were developed via water-assisted thermally induced phase separation. The SCC with 3 wt% carbon nanotubes had a hierarchical structure of micro/nanoscale pores and high content of stereo-complex crystallites (35.7 %). Along with the excellent water repellency (water contact angle: 157°), SCC aerogel was 2.7 times as resistant to hydrolysis than poly(l-lactide) aerogel (Ph = 13, 37 °C). Additionally, a maximum absorption capacity of 41.2 g g-1 and over 97 % oil/water separation efficiency after 10 cycles were obtained in low viscosity conditions; while in high viscosity conditions, it displayed excellent photothermal performance, reaching a surface temperature of 85 °C under 1 sunlight, reducing crude oil absorption time from 42 min to 60 s (97.6 %-time savings). Moreover, it facilitated continuous crude oil spill recovery under sunlight with an adsorption rate of 3.3 × 104 kg m-3 h-1. The SCC aerogel presents a potential route for utilizing solar energy in crude oil adsorption applications without additional environmental burden.
Subject(s)
Nanotubes, Carbon , Petroleum , Polyesters , Adsorption , PlasticsABSTRACT
Herein, an efficient biomass utilization is proposed to prepare bio-oil-derived carbon (BODPC) with hierarchical pores and certain H/O/N functionalities for superior Li+/Na+ storage. Kinetic analyses reveal that BODPC has similar behavior in the electrochemical Li+ and Na+ storage processes, in terms of physical adsorption (Stage I), chemical redox reactions with surface functionalities (Stage II), and insertion into the graphitic interlayer (Stage III). Promisingly, BODPC exhibits a high reversible specific capacity (1881.7 mAh g-1 for Li+ and 461.0 mAh g-1 for Na+ at 0.1 A g-1), superior rate capability (674.1 mAh g-1 for Li+ and 125.7 mAh g-1 for Na+ at 5.0 A g-1), and long-term cyclability. More notably, the BODPC with highly capacitive-dominant behavior would hold great promise for the applications of high-power, durable, and safe rechargeable batteries/capacitors.
Subject(s)
Carbon , Lithium , Ions , Kinetics , Plant Oils , Polyphenols , PorosityABSTRACT
The usage of exogenous antioxidant materials to relieve oxidative stress offers an important strategy for the therapy of oxidative stress-induced injuries. However, the fabrication processes toward the antioxidant materials usually require the involvement of extra metal ions and organic agents, as well as sophisticated purification steps, which might cause tremendous environmental stress and induce unpredictable side effects in vivo. To address these issues, herein, we proposed a novel strategy to fabricate green nanoparticles for efficiently modulating oxidative stress, which was facilely prepared from tea polyphenol extracts (originated from green tea) via a green enzymatic polymerization-based chemistry method. The resulting nanoparticles possessed a uniform spherical morphology and good stability in water and biomedium and demonstrated excellent radical scavenging properties. These nanoparticle scavengers could effectively prevent intracellular oxidative damage, accelerate wound recovery, and protect the kidneys from reactive oxygen species damaging in the acute kidney injury model. We hope this work will inspire the further development of more types of green nanoparticles for antioxidant therapies via similar synthetic strategies using green biomass materials.