Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
ACS Appl Mater Interfaces ; 13(28): 32716-32728, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34227797

ABSTRACT

Bacterial cellulose (BC) holds several unique properties such as high water retention capability, flexibility, biocompatibility, and high absorption capacity. All these features make it a potential material for wound healing applications. However, it lacks antibacterial properties, which hampers its applications for infectious wound healings. This study reported BC-based dressings containing ε-polylysine (ε-PL), cross-linked by a biocompatible and mussel-inspired polydopamine (PDA) for promoting infectious wound healing. BC membranes were coated with PDA by a simple self-polymerization process, followed by treating with different contents of ε-PL. The resulted membranes showed strong antibacterial properties against tested bacteria by both in vitro and in vivo evaluations. The membranes also exhibited hemocompatibility and cytocompatibility by in vitro investigations. Moreover, the functionalized membranes promoted infected wound healing using Sprague-Dawley rats as a model animal. A complete wound healing was observed in the group treated with functionalized membranes, while wounds were still open for control and pure BC groups in the same duration. Histological investigations indicated that the thickness of newborn skin was greater and smoother in the groups treated with modified membranes in comparison to neat BC or control groups. These results revealed that the functionalized membranes have great potential as a dressing material for infected wounds in future clinical applications.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bandages , Cellulose/chemistry , Polylysine/therapeutic use , Staphylococcal Skin Infections/drug therapy , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Cellulose/toxicity , Escherichia coli/drug effects , Indoles/chemistry , Indoles/therapeutic use , Indoles/toxicity , Male , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Polylysine/analogs & derivatives , Polylysine/toxicity , Polymers/chemistry , Polymers/therapeutic use , Polymers/toxicity , Rats, Sprague-Dawley , Skin/drug effects , Skin/pathology , Staphylococcal Skin Infections/pathology , Staphylococcus aureus/drug effects , Wound Infection/drug therapy , Wound Infection/pathology
2.
Front Pharmacol ; 10: 1039, 2019.
Article in English | MEDLINE | ID: mdl-31616295

ABSTRACT

Chemosensitivity is one of the key factors affecting the therapeutic effect on cancer, but the clinical application of corresponding drugs is rare. Hypoxia, a common feature of many solid tumors, including hepatocellular carcinoma (HCC), has been associated with resistance to chemotherapy in part through the activation of the Sonic Hedgehog (SHh) pathway. Hypoxia has also been associated with the increased SUMOylation of multiple proteins, including GLI family proteins, which are key mediators of SHh signaling, and has become a promising target to develop drug-resistant drugs for cancer treatment. However, there are few target drugs to abrogate chemotherapy resistance. Saikosaponin-d (Ssd), one of the main bioactive components of Radix bupleuri, has been reported to exert multiple biological effects, including anticancer activity. Here, we first found that Ssd inhibits the malignant phenotype of HCC cells while increasing their sensitivity to the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) drug system under hypoxia in vitro and in vivo. Furthermore, we had explored that GLI family activation and extensive protein SUMOylation were characteristics of HCC cells, and hypoxia could activate the SHh pathway and promote epithelial-mesenchymal transition (EMT), invasion, and chemosensitivity in HCC cells. SUMOylation is required for hypoxia-dependent activation of GLI proteins. Finally, we found that Ssd could reverse the effects promoted by hypoxia, specifically active sentrin/small ubiquitin-like modifier (SUMO)-specific protease 5 (SENP5), a SUMO-specific protease, in a time- and dose-dependent manner while inhibiting the expression of SUMO1 and GLI proteins. Together, these findings confirm the important role of Ssd in the chemoresistance of liver cancer, provide some data support for further understanding the molecular mechanisms of Ssd inhibition of malignant transformation of HCC cells, and provide a new perspective for the application of traditional Chinese medicine in the chemical resistance of liver cancer.

SELECTION OF CITATIONS
SEARCH DETAIL