Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biol Res ; 56(1): 65, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041203

ABSTRACT

BACKGROUND: Impaired pattern separation occurs in the early stage of Alzheimer's disease (AD), and hippocampal dentate gyrus (DG) neurogenesis participates in pattern separation. Here, we investigated whether spatial memory discrimination impairment can be improved by promoting the hippocampal DG granule cell neogenesis-mediated pattern separation in the early stage of AD by electroacupuncture (EA). METHODS: Five familial AD mutations (5 × FAD) mice received EA treatment at Baihui and Shenting points for 4 weeks. During EA, mice were intraperitoneally injected with BrdU (50 mg/kg) twice a day. rAAV containing Wnt5a shRNA was injected into the bilateral DG region, and the viral efficiency was evaluated by detecting Wnt5a mRNA levels. Cognitive behavior tests were conducted to assess the impact of EA treatment on cognitive function. The hippocampal DG area Aß deposition level was detected by immunohistochemistry after the intervention; The number of BrdU+/CaR+ cells and the gene expression level of calretinin (CaR) and prospero homeobox 1(Prox1) in the DG area of the hippocampus was detected to assess neurogenesis by immunofluorescence and western blotting after the intervention; The gene expression levels of FZD2, Wnt5a, DVL2, p-DVL2, CaMKII, and p-CaMKII in the Wnt signaling pathway were detected by Western blotting after the intervention. RESULTS: Cognitive behavioral tests showed that 5 × FAD mice had impaired pattern separation (P < 0.001), which could be improved by EA (P < 0.01). Immunofluorescence and Western blot showed that the expression of Wnt5a in the hippocampus was decreased (P < 0.001), and the neurogenesis in the DG was impaired (P < 0.001) in 5 × FAD mice. EA could increase the expression level of Wnt5a (P < 0.05) and promote the neurogenesis of immature granule cells (P < 0.05) and the development of neuronal dendritic spines (P < 0.05). Interference of Wnt5a expression aggravated the damage of neurogenesis (P < 0.05), weakened the memory discrimination ability (P < 0.05), and inhibited the beneficial effect of EA (P < 0.05) in AD mice. The expression level of Wnt pathway related proteins such as FZD2, DVL2, p-DVL2, CAMKII, p-CAMKII increased after EA, but the effect of EA was inhibited after Wnt5a was knocked down. In addition, EA could reduce the deposition of Aß plaques in the DG without any impact on Wnt5a. CONCLUSION: EA can promote hippocampal DG immature granule cell neogenesis-mediated pattern separation to improve spatial memory discrimination impairment by regulating Wnt5a in 5 × FAD mice.


Subject(s)
Alzheimer Disease , Electroacupuncture , Mice , Animals , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Bromodeoxyuridine , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Hippocampus/metabolism , Disease Models, Animal , Neurogenesis , Dentate Gyrus/metabolism
2.
J Agric Food Chem ; 70(38): 11901-11910, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36111893

ABSTRACT

Self-assembled nanotechnology is a promising strategy for improving the effective utilization of pesticides due to its distinct advantages. Herein, an amide-bonded prodrug conjugate based on pyrimethanil (PYR) and butyric acid (BA) was successfully synthesized by the nucleophilic substitution reaction and subsequently self-assembled into spherical nanoparticles (PB NPs) with an average size of 85 nm through the solvent exchange method without using any toxic adjuvant. The results showed that PB NPs based on PYR and BA had a synergistic antimicrobial activity against S. sclerotiorum on plant leaves due to good photostability, low volatilization, good surface activity, and improved retention. Additionally, PB NPs could be used by plant cells as nutrients to promote the growth of plants and thus reduced the toxicity of PYR to plant. Therefore, this prodrug conjugate self-assembly nanotechnology would provide a promising strategy for improving the effective utilization rates of pesticides and reducing their toxicities to plants.


Subject(s)
Anti-Infective Agents , Nanoparticles , Pesticides , Prodrugs , Amides , Butyric Acid , Disease Management , Prodrugs/pharmacology , Pyrimidines , Solvents
3.
J Speech Lang Hear Res ; 65(10): 3981-3995, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36095326

ABSTRACT

PURPOSE: Congenital deafness not only delays auditory development but also hampers the ability to perceive nonspeech and speech signals. This study aimed to use auditory event-related potentials to explore the mismatch negativity (MMN), P3a, negative wave (Nc), and late discriminative negativity (LDN) components in children with and without hearing loss. METHOD: Nineteen children with normal hearing (CNH) and 17 children with hearing loss (CHL) participated in this study. Two sets of pure tones (1 kHz vs. 1.1 kHz) and lexical tones (/ba2/ vs. /ba4/) were used to examine the auditory discrimination process. RESULTS: MMN could be elicited by the pure tone and the lexical tone in both groups. The MMN latency elicited by nonspeech and speech was later in CHL than in CNH. Additionally, the MMN latency induced by speech occurred later in the left than in the right hemisphere in CNH, and the MMN amplitude elicited by speech in CHL produced a discriminative deficiency compared with that in CNH. Although the P3a latency and amplitude elicited by nonspeech in CHL and CNH were not significantly different, the Nc amplitude elicited by speech performed much lower in CHL than in CNH. Furthermore, the LDN latency elicited by nonspeech was later in CHL than in CNH, and the LDN amplitude induced by speech showed higher dominance in the right hemisphere in both CNH and CHL. CONCLUSION: By incorporating nonspeech and speech auditory conditions, we propose using MMN, Nc, and LDN as potential indices to investigate auditory perception, memory, and discrimination.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Speech Perception , Acoustic Stimulation , Auditory Perception , Child , Electroencephalography , Evoked Potentials, Auditory , Humans , Speech
4.
Mediators Inflamm ; 2022: 5985143, 2022.
Article in English | MEDLINE | ID: mdl-35784174

ABSTRACT

Studies have shown that electroacupuncture (EA) can effectively improve vascular cognitive impairment (VCI), but its mechanisms have not been clearly elucidated. This study is aimed at investigating the mechanisms underlying the effects of EA treatment on hippocampal synaptic transmission efficiency and plasticity in rats with VCI. Methods. Sprague-Dawley rats were subjected to VCI with bilateral common carotid occlusion (2VO). EA stimulation was applied to Baihui (GV20) and Shenting (GV24) acupoints for 30 min once a day, five times a week, for four weeks. Our study also included nonacupoint groups to confirm the specificity of EA therapy. The Morris water maze (MWM) was used to assess cognitive function. Electrophysiological techniques were used to detect the field characteristics of the hippocampal CA3-CA1 circuit in each group of rats, including input-output (I/O), paired-pulse facilitation ratios (PPR), field excitatory postsynaptic potential (fEPSP), and excitatory postsynaptic current (EPSC). The expression of synapse- and calcium-mediated signal transduction associated proteins was detected through western blotting. Results. The MWM behavioural results showed that EA significantly improved cognitive function in VCI model rats. EA increased the I/O curve of VCI model rats from 20 to 90 µA. No significant differences were observed in hippocampal PPR. The fEPSP of the hippocampal CA3-CA1 circuit was significantly increased after EA treatment compared with that after nonacupuncture treatment. We found that EA led to an increase in the EPSC amplitude and frequency, especially in the decay and rise times. In addition, the protein expression and phosphorylation levels of N-methyl-D-aspartate receptor 2B, α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor 1, and Ca2+-calmodulin-dependent protein kinase II increased to varying degrees in the hippocampus of VCI model rats. Conclusion. EA at GV20 and GV24 acupoints increased the basic synaptic transmission efficiency and synaptic plasticity of the hippocampal CA3-CA1 circuit, thereby improving learning and memory ability in rats with VCI.


Subject(s)
Cognitive Dysfunction , Electroacupuncture , Animals , Cognitive Dysfunction/therapy , Electroacupuncture/methods , Hippocampus/metabolism , Rats , Rats, Sprague-Dawley , Synaptic Transmission
5.
Theranostics ; 12(4): 1756-1768, 2022.
Article in English | MEDLINE | ID: mdl-35198071

ABSTRACT

Designing a transformable nanosystem with improved tumor accumulation and penetration by tuning multiple physicochemical properties remains a challenge. Here, a near-infrared (NIR) light-driven nanosystem with size and charge dual-transformation for deep tumor penetration is developed. Methods: The core-shell nanotransformer is realized by integrating diselenide-bridged mesoporous organosilica nanoparticles as a reactive oxygen species (ROS)-responsive core with an indocyanine green (ICG)-hybrid N-isopropyl acrylamide layer as a thermosensitive shell. After loading doxorubicin (DOX), negatively charged nanomedicine prevents DOX leakage, rendering prolonged blood circulation time and high tumor accumulation. Results: Upon NIR light irradiation, mild photothermal effects facilitate the dissociation of the thermosensitive shell to achieve negative-to-positive charge reversal. Meanwhile, ICG-generated ROS cleave the diselenide bond of the organosilica core, resulting in rapid matrix degradation that produces DOX-containing smaller fragments. Such a light-driven dual-transformable nanomedicine simultaneously promotes deep tumor penetration and implements sufficient chemotherapy, along with evoking robust immunogenic cell death effects in vitro and in vivo. With the combination of a programmed cell death protein-1 (PD-1) checkpoint blockade, the nanotransformer remarkably blocks primary tumor growth and pulmonary metastasis of breast cancer with low systemic toxicity. Conclusions: This study develops a promising strategy to realize high tumor accumulation and deep penetration of light-transformable nanomedicine for efficient and safe chemo-immunotherapy.


Subject(s)
Doxorubicin , Nanoparticles , Cell Line, Tumor , Doxorubicin/pharmacology , Humans , Immunotherapy , Indocyanine Green/chemistry , Nanoparticles/chemistry , Phototherapy/methods , Reactive Oxygen Species
7.
Chin Med J (Engl) ; 134(6): 634-645, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33507006

ABSTRACT

ABSTRACT: Given the increasing incidence of neurodegenerative disease (ND), recent research efforts have intensified the search for curative treatments. Despite significant research, however, existing therapeutic options for ND can only slow down the progression of the disease, but not provide a cure. Light therapy (LT) has been used to treat some mental and sleep disorders. This review illustrates recent studies of the use of LT in patients with ND and highlights its potential for clinical applications. The literature was collected from PubMed through June 2020. Selected studies were primarily English articles or articles that could be obtained with English abstracts and Chinese main text. Articles were not limited by type. Additional potential publications were also identified from the bibliographies of identified articles and the authors' reference libraries. The identified literature suggests that LT is a safe and convenient physical method of treatment. It may alleviate sleep disorders, depression, cognitive function, and other clinical symptoms. However, some studies have reported limited or no effects. Therefore, LT represents an attractive therapeutic approach for further investigation in ND. LT is an effective physical form of therapy and a new direction for research into treatments for ND. However, it requires further animal experiments to elucidate mechanisms of action and large, double-blind, randomized, and controlled trials to explore true efficacy in patients with ND.


Subject(s)
Neurodegenerative Diseases , Animals , Humans , Neurodegenerative Diseases/therapy , Phototherapy , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL