Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Sci Food Agric ; 104(6): 3614-3623, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38148706

ABSTRACT

BACKGROUND: Pectin was considered as a potential candidate to improve the thermal stability of anthocyanins, and the binding ability of pectin to anthocyanins was influenced by its structure. In this study, sunflower pectins, modified by ultrasound (40 kHz) for different periods of time, were prepared and used to bind with anthocyanins, extracted from purple sweet potato. RESULTS: Characterization and thermal stability of pectin-anthocyanin complexes were investigated. The ultrasonic modification of pectin resulted in many changes in pectin chemical structure, including degradation of neutral sugar side chains, breakage of methoxyl groups, and increased molecular flexibility. Extension of ultrasonic modification time led to greater changes in pectin chemical structure. Analysis of the binding ability, as determined by Fourier transform infrared spectroscopy and molecular dynamics simulations, revealed that the interaction between pectin and anthocyanins was driven by hydrogen bonding, electrostatic interaction, and hydrophobic interaction. Pectins with different ultrasonic modification times bound with anthocyanins to different extents, mainly resulting from an increase in the number of hydrogen bonds. According to high-performance liquid chromatographic analysis, during heating at 90 °C the stronger the binding ability of pectin and anthocyanin complex, the better was its thermal stability. CONCLUSION: Ultrasonic modification of pectin could effectively enhance its binding ability to anthocyanin. © 2023 Society of Chemical Industry.


Subject(s)
Ipomoea batatas , Pectins , Pectins/chemistry , Anthocyanins/chemistry , Ultrasonics , Sugars/chemistry
2.
Soc Cogn Affect Neurosci ; 18(1)2023 11 10.
Article in English | MEDLINE | ID: mdl-37952232

ABSTRACT

Subject's own name (SON) is widely used in both daily life and the clinic. Event-related potential (ERP)-based studies have previously detected several ERP components related to SON processing; however, as most of these studies used SON as a deviant stimulus, it was not possible to determine whether these components were SON-specific. To identify SON-specific ERP components, we adopted a passive listening task with EEG data recording involving 25 subjects. The auditory stimuli were a SON, a friend's name (FN), an unfamiliar name (UN) selected from other subjects' names and seven different unfamiliar names (DUNs). The experimental settings included Equal-probabilistic, Frequent-SON, Frequent-FN and Frequent-UN conditions. The results showed that SON consistently evoked a frontocentral SON-related negativity (SRN) within 210-350 ms under all conditions, which was not detected with the other names. Meanwhile, a late positive potential evoked by SON was found to be affected by stimulus probability, showing no significant difference between the SON and the other names in the Frequent-SON condition, or between the SON and a FN in the Frequent-UN condition. Taken together, our findings indicated that the SRN was a SON-specific ERP component, suggesting that distinct neural mechanism underly the processing of a SON.


Subject(s)
Electroencephalography , Names , Humans , Electroencephalography/methods , Acoustic Stimulation/methods , Evoked Potentials/physiology , Probability
3.
Int J Biol Macromol ; 253(Pt 2): 126663, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37660844

ABSTRACT

The present study aimed to examine the impact of sunflower pectin (SFP) on the thermal stability and antioxidant activity of purple sweet potato anthocyanins (PSPA) at varying pH levels. It was observed that the pH value significantly influenced the ability of pectin to protect anthocyanins from thermal degradation, which was found to be associated with the rate of binding between PSPA and SFP. The binding rate of PSPA-SFP was observed to be highest at pH 4.0, primarily due to the influence of electrostatic interaction and hydrogen bonding. Monoacylated anthocyanins exhibited a binding rate approximately 2-4 % higher than that of diacylated anthocyanins. The PSPA-SFP demonstrated its highest thermal stability at pH 4.0, with a corresponding half-life of 14.80 h at 100 °C. Molecular dynamics simulations indicated that pectin had a greater affinity for the flavylium cation and hemiketal form of anthocyanins. The antioxidant activity of anthocyanins in PSPA and PSPA-SFP increased with increasing pH, suggesting that anthocyanins at high pH had higher antioxidant activity than anthocyanins at low pH.


Subject(s)
Asteraceae , Helianthus , Ipomoea batatas , Pectins , Antioxidants/pharmacology , Anthocyanins/chemistry , Ipomoea batatas/chemistry , Hydrogen-Ion Concentration
4.
Inflammopharmacology ; 31(4): 1993-2005, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37155118

ABSTRACT

Oridonin, a well-known traditional Chinese herbal medicinal product isolated from Isodon rubescens (Hemsl.) H.Hara, has many potential properties, including anti-inflammatory and antioxidant activities. However, there is no evidence whether oridonin have a protective effect on atherosclerosis. This study focused on the effects of oridonin on oxidative stress and inflammation generated from atherosclerosis. The therapeutic effect on atherosclerosis was evaluated by intraperitoneal injection of oridonin in a high-fat fed ApoE-/- mouse model. We isolated mouse peritoneal macrophages and detected the effect of oridonin on oxidized low-density lipoprotein-induced lipid deposition. Oil red O staining, Masson's staining, dihydroethidium fluorescence staining, immunohistochemical staining, western blotting analysis, immunofluorescence, enzyme-linked immunosorbent assay and quantitative real-time PCR were used to evaluate the effect on atherosclerosis and explore the mechanisms. Oridonin treatment significantly alleviated the progression of atherosclerosis, reduced macrophage infiltration and stabilized plaques. Oridonin could significantly inhibit inflammation associated with NLRP3 activation. Oridonin significantly reduced oxidative stress by blocking Nrf2 ubiquitination and degradation. We also found that oridonin could prevent the formation of foam cells by increasing lipid efflux protein and reducing lipid uptake protein in macrophages. Oridonin has a protective effect on atherosclerosis in ApoE-/- mice, which may be related to the inhibition of NLRP3 and the stabilization of Nrf2. Therefore, oridonin may be a potential therapeutic agent for atherosclerosis.


Subject(s)
Atherosclerosis , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Knockout , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Inflammation/drug therapy , Apolipoproteins E , Apolipoproteins/therapeutic use , Mice, Inbred C57BL
5.
Phytother Res ; 37(9): 4076-4091, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37156642

ABSTRACT

Molecular-targeted therapy has shown its effectiveness in pancreatic cancer, while single-targeted drug often cannot provide long-term benefit because of drug resistance. Fortunately, multitarget combination therapy can reverse drug resistance and achieve better efficacy. The typical treatment characteristics of traditional Chinese medicine monomer on tumor are multiple targets, with small side effects, low toxicity, and so forth. Agrimoniin has been reported to be effective on some cancers, while the mechanism still needs to be clarified. In this study, we used 5-ethynyl-2'-deoxyuridine, cell counting kit-8, flow cytometry, and western blot experiments to confirm that agrimoniin can significantly inhibit the proliferation of pancreatic cancer cell PANC-1 by inducing apoptosis and cell cycle arrest. In addition, by using SC79, LY294002 (the agonist or inhibitor of AKT pathway), and U0126 (the inhibitor of ERK pathway), we found that agrimoniin inhibited cell proliferation by simultaneously inhibiting AKT and ERK pathways. Moreover, agrimoniin could significantly increase the inhibitory effect of LY294002 and U0126 on pancreatic cancer cells. Meanwhile, in vivo experiments also supported the above results. In general, agrimoniin is a double-target inhibitor of AKT and ERK pathways in pancreatic cancer cells; it is expected to be used as a resistance reversal agent of targeted drugs or a synergistic drug of the inhibitor of AKT pathway or ERK pathway.


Subject(s)
MAP Kinase Signaling System , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation , Pancreatic Neoplasms/drug therapy , Cell Line, Tumor , Apoptosis
6.
J Affect Disord ; 312: 100-106, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35732221

ABSTRACT

BACKGROUND: There is a growing interest in exploring the neurocognitive mechanisms that may underlie psychological resilience. However, how the bottom-up automatic information processing relates to trait resilience has received less attention. We aimed to explore the relationship between trait resilience and trait-like automatic information processing in healthy adults. METHODS: Eighty-four healthy adults were recruited to explore whether and how resilience was related to sensory sensitivity by event-related potentials (ERPs). Resilience was measured by Connor-Davidson Resilience Scale (CD-RISC). Sensory sensitivity, more specifically, sensitivity of automatic mismatch detection was measured by two ERPs components, i.e., the mismatch negativity (MMN) with a passive auditory oddball paradigm and the error-related negativity (ERN) with an auditory Go/NoGo task. Using the multiple linear regression analyses, the relationship between self-reported resilience and the sensitivity of automatic mismatch detection (MMN/ERN amplitude/latency) was explored. RESULTS: The results showed that psychological resilience was positively correlated with both MMN and ERN latencies, i.e., higher resilience scores were associated with delayed MMN and ERN latencies. However, resilience was not significantly correlated with MMN and ERN amplitudes. CONCLUSIONS: Our results suggested that relatively higher resilience might link with less sensory sensitivity as reflected by slower automatic detection to mismatch information in the environment.


Subject(s)
Evoked Potentials, Auditory , Resilience, Psychological , Acoustic Stimulation/methods , Adult , Attention , Electroencephalography , Evoked Potentials , Humans
7.
Adv Healthc Mater ; 11(12): e2102781, 2022 06.
Article in English | MEDLINE | ID: mdl-35285581

ABSTRACT

In situ anti-tumor vaccination is an attractive type of cancer immunotherapy which relies on the effectiveness of dendritic cells (DCs) to engulf tumor antigens, become activated, and present antigens to T cells in lymphoid tissue. Here, a multifunctional nanocomplex based on calcium crosslinked polyaspartic acid conjugated to either a toll-like receptor (TLR)7/8 agonist or a photosensitizer is reported. Intratumoral administration of the nanocomplex followed by laser irradiation induces cell killing and hence generation of a pool of tumor-associated antigens, with concomitant promotion of DCs maturation and expansion of T cells in tumor-draining lymph nodes. Suppression of tumor growth is observed both at the primary site and at the distal site, thereby hinting at successful induction of an adaptive anti-tumor response. This strategy holds promise for therapeutic application in a pre-operative and post-operative setting to leverage to mutanome of the patient's own tumor to mount immunological memory to clear residual tumor cells and metastasis.


Subject(s)
Cancer Vaccines , Neoplasms , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Adjuvants, Immunologic/therapeutic use , Animals , Antigens, Neoplasm , Calcium , Cancer Vaccines/administration & dosage , Dendritic Cells , Drug Delivery Systems , Immunity , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles , Neoplasms/drug therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Vaccination
8.
J Ethnopharmacol ; 292: 115206, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35301099

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Oridonin (Ori), extracted from Isodon rubescens (Hemsl.) H.Hara, is a well-known traditional Chinese herbal medicinal product that possesses antioxidant and anti-inflammatory activities. Oxidative stress and inflammation are the main pathophysiological mechanisms in hindlimb IR injury. However, whether Ori has a protective effect on hind limb IR injury is unknown. AIM OF THE STUDY: The present study was designed to determine the effect of Ori on hindlimb IR injury and its relationship with oxidative stress and inflammation. MATERIALS AND METHODS: The hind limb IR injury model in mice was used to evaluate the protective effect and related mechanisms of Ori. Forty-eight C57BL/6 mice (n = 12 per group) were randomly divided into four groups: Sham group; IR group; IR + Ori (10 mg/kg) group and IR + Ori (20 mg/kg) group. Mice in the IR and IR + Ori groups were subjected to hindlimb IR injury, while mice in the Sham group were subjected to no hindlimb IR injury. HE staining, Masson's staining, TTC staining, DHE staining, TUNEL staining, western blotting analysis and quantitative real-time PCR were employed to explore the mechanisms by which Ori exerts a protective effect on a classical hindlimb IR model in mice. RESULTS: We found that Ori pretreatment prevented muscle damage and decreased cell apoptosis levels compared with the vehicle control. Moreover, the SOD2, CAT, MDA and ROS levels in muscle showed that Ori could significantly reduce oxidative stress in hindlimb IR mice, while the IL-1ß and TNF-α levels in muscle showed that Ori could significantly attenuate IR-induced inflammation. We also found that Ori could increase the expression of Nrf2 and its downstream protein HO-1 and inhibit the expression levels of NLRP3-related proteins (NLRP3, ASC and Caspase-1) in vivo. CONCLUSIONS: Our study suggested that Ori has a protective effect on hindlimb IR injury, which may be related to Nrf2-mediated oxidative stress and NLRP3-mediated inflammasome activation.


Subject(s)
NF-E2-Related Factor 2 , Reperfusion Injury , Animals , Diterpenes, Kaurane , Hindlimb , Inflammation/drug therapy , Inflammation/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress , Reperfusion Injury/metabolism
9.
Adv Healthc Mater ; 11(12): e2102739, 2022 06.
Article in English | MEDLINE | ID: mdl-35306756

ABSTRACT

Cancer immunotherapy is revolutionary in oncology and hematology. However, a low response rate restricts the clinical benefits of this therapy owing to inadequate T lymphocyte infiltration and low delivery efficiency of immunotherapeutic drugs. Herein, an intelligent nanovehicle (folic acid (FA)/1-(4-(aminomethyl) benzyl)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine (IMDQ)-oxaliplatin (F/IMO)@CuS) armed with multifunctional navigation is designed for the accurate delivery of cargoes to tumor cells and dendritic cells (DCs), respectively. The nanovehicle is based on a near infrared-responsive inorganic CuS nanoparticles, acting as a photosensitizer and carrier of the chemotherapeutic agent oxaliplatin, and enters tumor cells owing to the presence of folic acid on the surface of CuS upon intratumoral injection. Furthermore, a toll-like receptor (TLR) 7/8 agonist-conjugated polymer, anchored on the surface of CuS, is modified with mannose to bind with DCs in the tumor microenvironment. Upon exposure to laser irradiation, nanovehicles disassemble, releasing oxaliplatin, to ablate tumor cells and amplify immunogenic cell death in combination with photothermal therapy. Mannose-modified polymer-TLR7/8 agonist conjugates are subsequently exposed, leading to the activation of DCs and proliferation of T cells. Collectively, these intelligent nanovehicles reduce tumor burden, exert a robust antitumor immune response, and generate long-term immune protection to prevent tumor recurrence.


Subject(s)
Nanoparticles , Neoplasms , Adjuvants, Immunologic , Cell Line, Tumor , Folic Acid , Humans , Immunogenic Cell Death , Immunotherapy , Mannose , Neoplasms/drug therapy , Oxaliplatin/pharmacology , Polymers , Toll-Like Receptor 7/agonists , Tumor Microenvironment
10.
Genes (Basel) ; 12(4)2021 03 31.
Article in English | MEDLINE | ID: mdl-33807422

ABSTRACT

Chinese ginseng (Panax ginseng C. A. Meyer) is a highly cherished traditional Chinese medicine, with several confirmed medical effects and many more asserted health-boosting functions. Somatic chromosomal instability (CIN) is a hallmark of many types of human cancers and also related to other pathogenic conditions such as miscarriages and intellectual disabilities, hence, the study of this phenomenon is of wide scientific and translational medical significance. CIN also ubiquitously occurs in cultured plant cells, and is implicated as a major cause of the rapid decline/loss of totipotency with culture duration, which represents a major hindrance to the application of transgenic technologies in crop improvement. Here, we report two salient features of long-term cultured callus cells of ginseng, i.e., high chromosomal stability and virtually immortalized totipotency. Specifically, we document that our callus of ginseng, which has been subcultured for 12 consecutive years, remained highly stable at the chromosomal level and showed little decline in totipotency. We show that these remarkable features of cultured ginseng cells are likely relevant to the robust homeostasis of the transcriptional expression of specific genes (i.e., genes related to tissue totipotency and chromosomal stability) implicated in the manifestation of these two complex phenotypes. To our knowledge, these two properties of ginseng have not been observed in any animals (with respect to somatic chromosomal stability) and other plants. We posit that further exploration of the molecular mechanisms underlying these unique properties of ginseng, especially somatic chromosomal stability in protracted culture duration, may provide novel clues to the mechanistic understanding of the occurrence of CIN in human disease.


Subject(s)
Chromosomes, Plant/genetics , Panax/genetics , Tissue Culture Techniques/methods , Chromosomal Instability , Gene Expression Profiling , Gene Expression Regulation, Plant , Panax/cytology , Plant Proteins/genetics , Sequence Analysis, RNA , Time Factors
11.
Br J Pharmacol ; 178(18): 3696-3707, 2021 09.
Article in English | MEDLINE | ID: mdl-33908038

ABSTRACT

BACKGROUND AND PURPOSE: Mineralocorticoid receptors (MRs), glucocorticoid receptors (GRs) and corticotropin-releasing factor (CRF) in the paraventricular nucleus of hypothalamus (PVN) are involved in the response to stress. The present study investigated the role of GRs and MRs in the PVN in regulating depressive and anxiety-like behaviours. EXPERIMENTAL APPROACH: To model chronic stress, rats were exposed to corticosterone treatment via drinking water for 21 days, and GR antagonist RU486 and MR antagonist spironolactone, alone and combined, were directly injected in the PVN daily for the last 7 days of corticosterone treatment. Behavioural tests were run on days 22 and 23. Depressive- and anxiety-like behaviours were evaluated in forced swim test, sucrose preference test, novelty-suppressed feeding test and social interaction test. The expression of GRs, MRs and CRF were detected by western blot. KEY RESULTS: Rats exposed to corticosterone exhibited depressive- and anxiety-like behaviours. The expression of GRs and MRs decreased, and CRF levels increased in the PVN. The intra-PVN administration of RU486 increased the levels of GRs and CRF without influencing depressive- or anxiety-like behaviours. The spironolactone-treated group exhibited an increase in MRs without influencing GRs and CRF in the PVN and improved anxiety-like behaviours. Interestingly, the intra-PVN administration of RU486 and spironolactone combined restored expression of GRs, MRs and CRF and improved depressive- and anxiety-like behaviours. CONCLUSION AND IMPLICATIONS: In this rat model of stress, the simultaneous restoration of GRs, MRs and CRF in the PVN might play an important role in the treatment of depression and anxiety.


Subject(s)
Paraventricular Hypothalamic Nucleus , Receptors, Mineralocorticoid , Animals , Corticosterone , Corticotropin-Releasing Hormone/metabolism , Glucocorticoids/pharmacology , Hypothalamus/metabolism , Rats , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism
12.
Ann Palliat Med ; 10(4): 4846-4857, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33832318

ABSTRACT

This paper aims to analyze how intestinal flora regulates liver fibrosis pathogenesis and to evaluate the regulatory effect of traditional Chinese medicine (TCM) on the intestinal flora, providing new insights into liver fibrosis treatment. Destruction of the intestinal microbiome can lead to liver fibrosis development, accelerating the intestinal microbiome's disruption. TCM can effectively regulate the intestinal flora, helping prevent and treat liver fibrosis. This review discusses the mechanisms behind intestinal flora changes in liver fibrosis and how TCM can regulate these changes. We searched PubMed, the Wanfang database, and CNKI for "liver fibrosis", "intestinal microflora", and "intestinal microbiota" and reviewed the retrieved literature. We detail the prevention and treatment options for liver fibrosis though the use of TCM in regulating intestinal flora. We also highlight the influence of the intestinal flora on liver fibrosis and present the research regarding the prevention and treatment of liver fibrosis using TCM. We also describe the effects of TCM on the intestinal flora. TCM can effectively regulate the intestinal flora to prevent and treat liver fibrosis through the liver-intestine axis.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Drugs, Chinese Herbal/therapeutic use , Humans , Liver Cirrhosis , Medicine, Chinese Traditional
13.
Eur Radiol ; 31(7): 4929-4946, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33449181

ABSTRACT

OBJECTIVE: To investigate the efficacy and safety of prostatic artery embolization (PAE) vs. transurethral resection of the prostate (TURP) in patients affected by benign prostatic hyperplasia (BPH). We also reviewed mean changes from baseline in PAE at selected follow-up points. METHODS: PubMed, Web of Science, and Embase were searched up to May 1, 2020. Randomized controlled trials on PAE were collected according to specific inclusion and exclusion criteria. Meta-analyses were performed using RevMan 5.3, STATA 14, and GraphPad Prism 8. Pooled patient-reported scores and functional outcomes were calculated by using a fixed or random-effect model. RESULTS: Eleven articles met our selection criteria and ten independent patient series were included in the final analysis. Pooled estimates suggested no significant difference between TURP and PAE for patient-reported outcomes including International Prostate Symptom Score (2.32 (- 0.44 to 5.09)) and quality of life (0.18 (- 0.41 to 0.77)) at 12 months. PAE was less effective regarding improvements in most functional outcomes such as maximum flow rate, prostate volume, and prostate-specific antigen. Moreover, PAE may be associated with relatively fewer complications, lower cost, and shorter hospitalization. After the PAE procedure, the overall weighted mean differences for all outcomes except sexual health scores were significantly improved from baseline during follow-up to 24 months. CONCLUSION: PAE is non-inferior to TURP with regard to improving patient-reported outcomes, though most functional parameters undergo more changes after TURP than after PAE. Moreover, PAE can significantly continue to relieve symptoms for 24 months without causing serious complications. KEY POINTS: • PAE is as effective as TURP in improving subjective symptom scores, with fewer complications and shorter hospitalization times. • PAE is inferior to TURP in the improvement of most functional outcomes. • Improvements due to PAE are durable during follow-up to 24 months.


Subject(s)
Embolization, Therapeutic , Prostatic Hyperplasia , Transurethral Resection of Prostate , Arteries , Humans , Male , Prostatic Hyperplasia/surgery , Quality of Life , Randomized Controlled Trials as Topic , Treatment Outcome
14.
J Ethnopharmacol ; 269: 113725, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33352241

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum (G. lucidum, Lingzhi), also known as "immortality mushroom" has been broadly used to improve health and longevity for thousands of years in Asia. G. lucidum and its spores have been used to promote health, based on its broad pharmacological and therapeutic activity. This species is recorded in Chinese traditional formula as a nootropic and has been suggested to improve cognitive dysfunction in Alzheimer's disease. However, little is known about the nootropic effects and molecular mechanism of action of G. lucidum spores. AIM OF THE STUDY: The present study investigated the protective effects of sporoderm-deficient Ganoderma lucidum spores (RGLS) against learning and memory impairments and its mechanism of action. MATERIALS AND METHODS: In the Morris water maze, the effects of RGLS on learning and memory impairments were evaluated in a rat model of sporadic Alzheimer's disease that was induced by an intracerebroventricular injection of streptozotocin (STZ). Changes in amyloid ß (Aß) expression, Tau expression and phosphorylation, brain-derived neurotrophic factor (BDNF), and the BDNF receptor tropomyosin-related kinase B (TrkB) in the hippocampus were evaluated by Western blot. RESULTS: Treatment with RGLS (360 and 720 mg/kg) significantly enhanced memory in the rat model of STZ-induced sporadic Alzheimer's disease and reversed the STZ-induced increases in Aß expression and Tau protein expression and phosphorylation at Ser199, Ser202, and Ser396. The STZ-induced decreases in neurotrophic factors, including BDNF, TrkB and TrkB phosphorylation at Tyr816, were reversed by treatment with RGLS. CONCLUSION: These findings indicate that RGLS prevented learning and memory impairments in the present rat model of STZ-induced sporadic Alzheimer's disease, and these effects depended on a decrease in Aß expression and Tau hyperphosphorylation and the modulation of BDNF-TrkB signaling in the hippocampus.


Subject(s)
Alzheimer Disease/drug therapy , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Memory Disorders/prevention & control , Reishi/chemistry , Spores, Fungal/chemistry , Alzheimer Disease/chemically induced , Amyloid beta-Peptides/metabolism , Animals , Brain-Derived Neurotrophic Factor/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/therapeutic use , Hippocampus/drug effects , Male , Maze Learning/drug effects , Memory Disorders/chemically induced , Phosphorylation/drug effects , Plaque, Amyloid/chemically induced , Plaque, Amyloid/prevention & control , Rats, Sprague-Dawley , Receptor, trkB/drug effects , Receptor, trkB/metabolism , Signal Transduction/drug effects , Streptozocin/toxicity , tau Proteins/drug effects , tau Proteins/metabolism
15.
Cell Biosci ; 10(1): 137, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33292517

ABSTRACT

BACKGROUND: Macrophages that accumulate in atherosclerotic plaques contribute to progression of the lesions to more advanced and complex plaques. Although iron deposition was found in human atherosclerotic plaques, clinical and pre-clinical studies showed controversial results. Several epidemiological studies did not show the positive correlation between a systemic iron status and an incidence of cardiovascular diseases, suggesting that the iron involvement occurs locally, rather than systemically. RESULTS: To determine the direct in vivo effect of iron accumulation in macrophages on the progression of atherosclerosis, we generated Apoe-/- mice with a macrophage-specific ferroportin (Fpn1) deficiency (Apoe-/-Fpn1LysM/LysM). Fpn1 deficiency in macrophages dramatically accelerated the progression of atherosclerosis in mice. Pathophysiological evidence showed elevated levels of reactive oxygen species, aggravated systemic inflammation, and altered plaque-lipid composition. Moreover, Fpn1 deficiency in macrophages significantly inhibited the expression of ABC transporters (ABCA1 and ABCG1) by decreasing the expression of the transcription factor LXRα, which reduced cholesterol efflux and therefore promoted foam cell formation and enhanced plaque formation. Iron chelation relieved the symptoms moderately in vivo, but drastically ex vivo. CONCLUSIONS: Macrophage iron content in plaques is a critical factor in progression of atherosclerosis. The interaction of iron and lipid metabolism takes place in macrophage-rich atherosclerotic plaques. And we also suggest that altering intracellular iron levels in macrophages by systemic iron chelation or dietary iron restriction may be a potential supplementary strategy to limit or even regress the progression of atherosclerosis.

16.
Front Neurosci ; 14: 557170, 2020.
Article in English | MEDLINE | ID: mdl-33281541

ABSTRACT

NLRP3 inflammasome has been considered as an important contributor to inflammation and neuronal death after traumatic brain injury (TBI). Oridonin (Ori), the major active ingredient of Chinese herbal medicine Rabdosia rubescens, has been proved to be a covalent NLRP3 inhibitor with strong anti-inflammation activity. The purpose of this study was to investigate the effect of Ori on inflammation and brain injury induced by TBI. Adult male C57BL/6 mice were subjected to closed-head injury using Hall's weight-dropping method. Ori was injected directly intraperitoneally at a dose of 10 mg/kg within 30 min after TBI and injected once daily until the experiments ended. Our results showed that NLRP3 inflammasome was activated within 24 h post-TBI. The expression of NLRP3 inflammasome components (NLRP3, ASC, and caspase-1) was significantly decreased after treatment with Ori. Besides, the secretion of IL-1ß and IL-18, downstream inflammatory factors of activated caspase-1, was reduced by Ori treatment. Importantly, Ori administration further protected the blood-brain barrier, alleviated brain edema, reduced cortical lesion volume, decreased cell death, and attenuated neurological deficits after TBI. Our findings indicate that NLRP3 inflammasome participated in the secondary injury after TBI and the application of Ori may provide neuroprotection via inhibiting NLRP3 inflammasome in animal models, suggesting that Ori might be a promising candidate for patients with TBI.

17.
Chin J Integr Med ; 26(10): 794-800, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31502184

ABSTRACT

The interaction between immune cells and hepatic stellate cells (HSCs) can modulate the development of hepatic fibrosis. It can also regulate hepatic fibrosis and liver cirrhosis caused by excessive deposition of extracellular matrix (ECM). This article reviews the action mechanism of immune cells on liver fibrosis and the effect of Astragalus membranaeus and its active components on immune cells. In-depth study of interaction between immune cells and HSCs on the pathogenesis of liver fibrosis, and the regulatory effect of Astragalus membranaeus and its active components on immune mechanism will provide new insights in the treatment of liver fibrosis.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Immunity/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/immunology , Animals , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/chemistry , Humans , Mice , Molecular Structure
18.
Front Pharmacol ; 10: 354, 2019.
Article in English | MEDLINE | ID: mdl-31024317

ABSTRACT

The pathogenesis of itchy skin diseases including allergic contact dermatitis (ACD) is complicated and the treatment of chronic itch is a worldwide problem. One traditional Tibetan medicine, Qingpeng ointment (QP), has been used in treatment of ACD in China for years. In this study we used HPLC and LC/MS analysis, combined with a BATMAN-TCM platform, for detailed HPLC fingerprint analysis and network pharmacology of QP, and investigated the anti-inflammatory and antipruritic activities of QP on ACD induced by squaric acid dibutylester (SADBE) in mice. The BATMAN-TCM analysis provided information of effector molecules of the main ingredients of QP, and possible chronic dermatitis-associated molecules and cell signaling pathways by QP. In ACD mice, QP treatment suppressed the scratching behavior induced by SADBE in a dose-dependent manner and inhibited the production of Th1/2 cytokines in serum and spleen. Also, QP treatment reversed the upregulation of mRNAs levels of itch-related genes in the skin (TRPV4, TSLP, GRP, and MrgprA3) and DRGs (TRPV1, TRPA1, GRP, and MrgprA3). Furthermore, QP suppressed the phosphorylation of Erk and p38 in the skin. In all, our work indicated that QP can significantly attenuate the pathological alterations of Th1/2 cytokines and itch-related mediators, and inhibit the phosphorylation of MAPKs to treat the chronic itch.

19.
RSC Adv ; 9(23): 12913-12920, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-35520807

ABSTRACT

Six new heptaketides, pleosporalins A-F (1-5, and 7), and a new heptaketide derivative, pleosporalin G (9), together with four biosynthetically related known compounds (6, 8, 10, and 11), were isolated from an endophytic fungus, Pleosporales sp. F46, found in the medicinal plant Mahonia fortunei. The structures and stereochemistry of these compounds were established by extensive spectroscopic analyses including LC-HRMS, NMR spectroscopy, optical rotations, ECD calculations, and single-crystal X-ray diffraction. The antifungal activities of isolated compounds 1-11 were investigated against Candida albicans, and their cytotoxic activities were evaluated against A549, SMMC-721, and MDA-MB-231 cancer cell lines. Compound 1 was active against C. albicans with an MIC80 of 128 µg mL-1, and compound 7 showed moderate cytotoxicity against MDA-MB-231 with an IC50 of 22.4 ± 1.1 µM. By comparing compounds 1 and 7 with structurally related metabolites, it was revealed that alterations to their C-1 or C-2 substitutions could significantly influence their antifungal or cytotoxic efficacies.

SELECTION OF CITATIONS
SEARCH DETAIL