Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Pediatr Gastroenterol Nutr ; 75(3): 304-307, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35675704

ABSTRACT

This was a retrospective study that compared outcomes in pediatric intestinal failure (IF) patients that were switched from ethanol lock therapy (ELT) to sodium bicarbonate lock therapy (SBLT). The primary outcome was rate of catheter-related blood stream infections (CRBSI). The secondary outcomes were number of hospitalizations, emergency room (ER) visits, central venous catheter (CVC)-related complications. In 4 patients, median rates of CRBSI were 2.77 (interquartile range [IQR] 0.6-5.6) on ELT versus 0 on SBLT per 1000 catheter days ( P = 0.17). The median rates of hospitalizations and ER visits for CVC-related complications were 6.1 (IQR 3.2-10.2) on ELT versus 0 on SBLT (IQR 0-0; P = 0.11) and 2.8 (IQR 2-3.6) on ELT versus 1.8 (IQR 0-3.7) on SBLT per 1000 catheter days ( P = 0.50), respectively. Rates of CVC-related complications were similar. No adverse events were reported. SBLT may be safe and effective for pediatric IF.


Subject(s)
Bacteremia , Catheter-Related Infections , Catheterization, Central Venous , Central Venous Catheters , Intestinal Failure , Bacteremia/chemically induced , Catheter-Related Infections/prevention & control , Catheterization, Central Venous/adverse effects , Child , Ethanol/adverse effects , Humans , Pilot Projects , Retrospective Studies , Sodium Bicarbonate/therapeutic use
2.
Phytomedicine ; 100: 154045, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35338991

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion (I/R) causes damage to coronary capillary endothelial barrier and microvascular leakage (MVL), aggravating tissue injury and heart dysfunction. However, the effective strategy for protecting endothelium barrier of cardiac vasculature remains limited. PURPOSE: This study aimed to explore the effect of Astragaloside IV (ASIV) on coronary MVL after cardiac I/R and the underlying mechanism. STUDY DESIGN: Sprague-Dawley (SD) rats were used for assessment of the efficacy of Astragaloside IV in protection of myocardial I/R injury, while human cardiac microvascular endothelial cells were applied to gain more insight into the underlying mechanism. METHODS: Sprague-Dawley rats with or without pretreatment by ASIV at 10 mg/kg were subjected to occlusion of left coronary anterior descending artery followed by reperfusion. Endothelial cells were exposed to hypoxia and re-oxygenation (H/R). The distribution of junction proteins was detected by immunofluorescence staining and confocal microscope, the content of junction proteins was detected by Western blot, the level of adenosine triphosphate (ATP) was detected by ELISA, and the signal pathway related to permeability was detected by siRNA infection. The fluorescence intensity of FITC-albumin and FITC-Dextran was measured to evaluate the permeability of endothelial cells. RESULTS: ASIV exhibited protective effects on capillary damage, myocardium edema, albumin leakage, leucocyte infiltration, and the downregulated expression of endothelial junction proteins after I/R. Moreover, ASIV displayed ability to protect ATP from depletion after I/R or H/R, and the effect of ASIV on regulating vascular permeability and junction proteins was abolished once ATP synthase was inhibited. Notably, ASIV activated the insulin-like growth factor 1 receptor (IGF1R) and downstream signaling after reoxygenation. Knocking IGF1R down abolished the effect of ASIV on restoration of ATP, junction proteins and endothelial barrier after H/R. CONCLUSION: ASIV was potential to prevent MVL after I/R in heart. Moreover, the study for the first time demonstrated that the beneficial role of ASIV depended on promoting production of ATP through activating IGF1R signaling pathway. This result provided novel insight for better understanding the mechanism underlying the potential of ASIV to cope with cardiac I/R injury.


Subject(s)
Myocardial Reperfusion Injury , Saponins , Triterpenes , Adenosine Triphosphate/pharmacology , Animals , Endothelial Cells , Endothelium , Ischemia/drug therapy , Myocardial Reperfusion Injury/drug therapy , Rats , Rats, Sprague-Dawley , Reperfusion , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction , Triterpenes/pharmacology , Triterpenes/therapeutic use
3.
J Dev Orig Health Dis ; 13(5): 550-555, 2022 10.
Article in English | MEDLINE | ID: mdl-34779376

ABSTRACT

The aim of this study was to evaluate the association between prenatal and neonatal period exposures and the risk of childhood and adolescent nasopharyngeal carcinoma (NPC). From January 2009 to January 2016, a total of 46 patients with childhood and adolescent NPC (i.e., less than 18 years of age) who were treated at Sun Yat-sen University Cancer Center were screened as cases, and a total of 45 cancer-free patients who were treated at Sun Yat-sen University Zhongshan Ophthalmic Center were selected as controls. The association between maternal exposures during pregnancy and obstetric variables and the risk of childhood and adolescent NPC was evaluated using logistic regression analysis. Univariate analysis revealed that compared to children and adolescents without a family history of cancer, those with a family history of cancer had a significantly higher risk of childhood and adolescent NPC [odds ratios (OR) = 3.15, 95% confidence interval (CI) = 1.02-9.75, P = 0.046], and the maternal use of folic acid and/or multivitamins during pregnancy was associated with a reduced risk of childhood and adolescent NPC in the offspring (OR = 0.07, 95% CI = 0.02-0.25, P < 0.001). After multivariate analysis, only the maternal use of folic acid and/or multivitamins during pregnancy remained statistically significant. These findings suggest that maternal consumption of folic acid and/or multivitamins during pregnancy is associated with a decreased risk of childhood and adolescent NPC in the offspring.


Subject(s)
Folic Acid , Nasopharyngeal Neoplasms , Adolescent , Child , Female , Humans , Infant, Newborn , Multivariate Analysis , Nasopharyngeal Carcinoma/epidemiology , Nasopharyngeal Neoplasms/chemically induced , Nasopharyngeal Neoplasms/epidemiology , Nasopharyngeal Neoplasms/prevention & control , Pregnancy , Vitamins/adverse effects
4.
Microcirculation ; 28(4): e12680, 2021 05.
Article in English | MEDLINE | ID: mdl-33486837

ABSTRACT

OBJECTIVE: To investigate the effect of Yiqifumai injection (YQFM), a compound Chinese medicine, and its main active ingredients on lipopolysaccharide (LPS)-induced microvascular disturbance in mesentery and ileum. METHODS: Rats were infused with LPS (5 mg/kg/h) for 90 min. Thirty minutes after initiation of LPS administration, YQFM (160 mg/kg/h), Rb1 (5 mg/kg/h), Sch (2.5 mg/kg/h), or Rb1+Sch (5 mg/kg/h + 2.5 mg/kg/h) was infused until 90 min. Human umbilical vein endothelial cells (HUVECs) were incubated with LPS (100 ng/ml) for 90 min. YQFM (1 mg/ml), Rb1 (100 µM), Sch (100 µM), or Rb1+Sch (200 µM) was added 30 min after initiation of LPS stimulation. RESULTS: Yiqifumai injection and Rb1+Sch inhibited mesenteric venule hyperpermeability, suppressed microvillar erosion and submucosal edema, and protected claudin-5 from downregulation and interleukin-1ß from upregulation in ileal tissues after LPS. Study in HUVECs confirmed the effect of YQFM and Rb1+Sch on JAM-1 after LPS and revealed a similar effect on other junction proteins. Moreover, YQFM and Rb1+Sch attenuated the dysfunctional energy metabolism and the activation of TLR-4/Src/NF-κB signaling with Rb1 and Sch being partially effective. CONCLUSION: These results demonstrated the beneficial effect of post-treatment with YQFM, which is attributable to its main ingredient Rb1 and Sch, and likely mediated by targeting TLR-4/Src/NF-κB signaling pathway.


Subject(s)
Cardiovascular Agents , Drugs, Chinese Herbal , Ileum/blood supply , Mesentery/blood supply , Microvessels/drug effects , Vascular Diseases/drug therapy , Animals , Cardiovascular Agents/administration & dosage , Drugs, Chinese Herbal/administration & dosage , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Lipopolysaccharides/toxicity , NF-kappa B , Rats , Toll-Like Receptor 4 , Vascular Diseases/etiology
5.
PLoS One ; 14(12): e0226970, 2019.
Article in English | MEDLINE | ID: mdl-31887180

ABSTRACT

As the only route formed in the inner Qinghai-Tibet plateau, the Tang-Tibet Ancient Road promoted the extension of the Overland Silk Roads to the inner Qinghai-Tibet plateau. Considering the Complex geographical and environmental factors of inner Qinghai-Tibet Plateau, we constructed a weighted trade route network based on geographical integration factors, and then adopted the principle of minimum cost and the shortest path on the network to simulate the ancient Tang-Tibet Ancient Road. We then compared the locations of known key points documented in the literature, and found a significant correspondence in the Qinghai section. However, there was a certain deviation between the key points recorded in Tibetan section and the simulated route; we found that the reason is the relative oxygen content (ROC) became a limited factor of the choice of the Tibetan section road. Moreover, we argue that the warm and humid climate and the human migration to the hinterland of the Qinghai-Tibet plateau were the fundamental driving forces for the formation of the Tang-Tibet Ancient Road.


Subject(s)
Climate , Geography , Human Migration/history , History, Ancient , Humans , Silk , Tibet
6.
Pharmacol Res ; 146: 104272, 2019 08.
Article in English | MEDLINE | ID: mdl-31085230

ABSTRACT

QiShenYiQi Pills (QSYQ) is a compound Chinese medicine widely used in China for treatment of cardiovascular disease. However, limited data are available regarding the anti-fibrotic role of QSYQ after ischemia/reperfusion (I/R) injury. This study aimed to investigate the effect of post-treatment with QSYQ on myocardial fibrosis after I/R-induced myocardium injury, and the role of different compounds of QSYQ, focusing especially on the involvement of chemokine ribosomal protein S19 (RP S19) dimer and monocyte migration. Male Sprague-Dawley rats were subjected to left anterior descending coronary artery occlusion for 30 min followed by reperfusion with or without administration of QSYQ (0.6, 1.2, or 1.8 g/kg) once daily by gavage for 6 days. Post-treatment with QSYQ diminished I/R-induced infarct size, alleviated myocardium injury, attenuated myocardial fibrosis after 6 days of reperfusion, and restored heart function and myocardial blood flow after I/R. In addition, the drug significantly inhibited monocyte infiltration and macrophage polarization towards M2, which was attributable to chemokine RP S19 dimer. Moreover, Western blots revealed that QSYQ blocked I/R-induced increase in TGFß1 and TGFßRⅡ and reversed its relevant gene expression, such as Smad3,4,6,7, and inhibited the increase of MMP 2,9 expression. As the major components of QSYQ, astragaloside IV (AsIV), 3,4-dihydroxy-phenyl lactic acid (DLA), and notoginsenoside R1 (R1) were assessed as to the contribution of each of them to the expression of the proteins concerned. The results showed that the effect of AsIV was similar to QSYQ, while DLA and R1 only partly simulated the effect of QSYQ. The results provide evidence for the potential role of QSYQ in treating myocardial fibrosis following I/R injury. This effect may be associated with QSYQ's inhibition effect on monocyte chemotaxis and TGFß1/Smads signaling pathway with different component targeting distinct link (s) of the signaling.


Subject(s)
Cardiotonic Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Animals , Cardiotonic Agents/pharmacology , Cell Line , Drugs, Chinese Herbal/pharmacology , Fibrosis , Macrophages/drug effects , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , RNA, Small Interfering/genetics , Rats, Sprague-Dawley , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism
7.
Microcirculation ; 26(7): e12553, 2019 10.
Article in English | MEDLINE | ID: mdl-31059171

ABSTRACT

OBJECTIVE: Yiqifumai injection is a compound Chinese medicine used to treat microcirculatory disturbance-related diseases clinically. Our previous study proved that Yiqifumai injection pretreatment inhibited lipopolysaccharide-induced venular albumin leakage in rat mesentery. This study aimed to investigate whether Yiqifumai injection attenuated cerebral microvascular hyperpermeability and corresponding contribution of its main ingredients. METHODS: Rats were challenged by lipopolysaccharide infusion (5 mg/kg/h) for 90 minutes. Yiqifumai injection (160 mg/kg/h), Rb1 (5 mg/kg/h), Sch (2.5 mg/kg/h), and Rb1 (5 mg/kg/h) + Sch (2.5 mg/kg/h) were infused 30 minutes before (pretreatment) or after (post-treatment) lipopolysaccharide administration. RESULTS: Both pretreatment and post-treatment with Yiqifumai injection attenuated cerebral venular albumin leakage during lipopolysaccharide infusion and cerebrovascular hyperpermeability at 72 hours after lipopolysaccharide infusion. Yiqifumai injection restrained the decreased junction protein expression, adenosine triphosphate content, and mitochondria complex I, II, IV, and V activities. Moreover, Yiqifumai injection inhibited toll-like receptor-4 expression, Src phosphorylation, and caveolin-1 expression. Its main ingredients Rb1 and Sch alone worked differently, with Rb1 being more effective for enhancing energy metabolism, while Sch attenuating toll-like receptor-4 expression and Src activation. CONCLUSION: Yiqifumai injection exerts a protective and ameliorated effect on cerebral microvascular hyperpermeability, which is more effective than any of its ingredients, possibly due to the interaction of its main ingredients through a multi-pathway mode.


Subject(s)
Capillary Permeability/drug effects , Cerebrovascular Circulation/drug effects , Drugs, Chinese Herbal/pharmacology , Lipopolysaccharides/toxicity , Microcirculation/drug effects , Animals , Male , Rats , Rats, Wistar
8.
Stroke ; 49(9): 2211-2219, 2018 09.
Article in English | MEDLINE | ID: mdl-30354988

ABSTRACT

Background and Purpose- tPA (tissue-type plasminogen activator) is the only recommended intravenous thrombolytic agent for ischemic stroke. However, its application is limited because of increased risk of hemorrhagic transformation beyond the time window. T541 is a Chinese compound medicine with potential to attenuate ischemia and reperfusion injury. This study was to explore whether T541-benefited subjects underwent tPA thrombolysis extending the time window. Methods- Male C57BL/6 N mice were subjected to carotid artery thrombosis by stimulation with 10% FeCl3 followed by 10 mg/kg tPA with/without 20 mg/kg T541 intervention at 4.5 hours. Thrombolysis and cerebral blood flow were observed dynamically until 24 hours after drug treatment. Neurological deficit scores, brain edema and hemorrhage, cerebral microvascular junctions and basement membrane proteins, and energy metabolism in cortex were assessed then. An in vitro hypoxia/reoxygenation model using human cerebral microvascular endothelial cells was used to evaluate effect of T541 on tight junctions and F-actin in the presence of tPA. Results- tPA administered at 4.5 hours after carotid thrombosis resulted in a decrease in thrombus area and survival rate, whereas no benefit on cerebral blood flow. Study at 24 hours after tPA administration revealed a significant angioedema and hemorrhage in the ischemia hemisphere, a decreased expression of junction proteins claudin-5, zonula occludens-1, occludin, junctional adhesion molecule-1 and vascular endothelial cadherin, and collagen IV and laminin. Meanwhile, ADP/ATP, AMP/ATP, and ATP5D (ATP synthase subunit) expression and activities of mitochondria complex I, II, and IV declined, whereas malondialdehyde and 8-Oxo-2'-deoxyguanosine increased and F-actin arrangement disordered. All the insults after tPA treatment were attenuated by addition of T541 dose dependently. Conclusions- The results suggest T541 as a potential remedy to attenuate delayed tPA-related angioedema and hemorrhage and extend time window for tPA treatment. The potential of T541 to upregulate energy metabolism and protect blood-brain barrier is likely attributable to its effects observed.


Subject(s)
Alkenes/pharmacology , Brain Edema , Carotid Artery Thrombosis , Cerebrovascular Circulation/drug effects , Drugs, Chinese Herbal/pharmacology , Intracranial Hemorrhages , Polyphenols/pharmacology , Reperfusion Injury , Saponins/pharmacology , Animals , Antigens, CD/drug effects , Antigens, CD/metabolism , Astragalus Plant , Brain/blood supply , Brain/drug effects , Cadherins/drug effects , Cadherins/metabolism , Cell Adhesion Molecules/drug effects , Cell Adhesion Molecules/metabolism , Claudin-5/drug effects , Claudin-5/metabolism , Collagen Type IV/drug effects , Collagen Type IV/metabolism , Disease Models, Animal , Drug Combinations , Electron Transport Complex I , Electron Transport Complex II , Electron Transport Complex IV , Laminin/drug effects , Laminin/metabolism , Male , Mice , Occludin/drug effects , Occludin/metabolism , Panax notoginseng , Receptors, Cell Surface/drug effects , Receptors, Cell Surface/metabolism , Tissue Plasminogen Activator/pharmacology , Zonula Occludens-1 Protein/drug effects , Zonula Occludens-1 Protein/metabolism
9.
Front Physiol ; 9: 296, 2018.
Article in English | MEDLINE | ID: mdl-29674972

ABSTRACT

Background: Gualou Xiebai Decoction (GLXB) is a classic prescription of Chinese medicine used for the treatment of cardiac problems. The present study was designed to explore the effect and mechanism of GLXB on ischemia/reperfusion (I/R) induced disorders in myocardial structure and function, focusing on the regulation of energy metabolism and the RhoA/ROCK pathway. Methods: After hyperlipidemic rat model was established by oral administration of high fat diet, the rats were treated with GLXB for 6 weeks and subjected to 30 min occlusion of the left anterior descending coronary artery (LADCA) followed by 90 min reperfusion to elicit I/R challenge. Myocardial infarct size was assessed by Evans blue-TTC staining. Myocardial blood flow (MBF) and cardiac function were evaluated. Enzyme-linked immunosorbent assay was performed to examine the content of ATP, ADP, AMP, CK, CK-MB, LDH, cTnT, cTnI, and IL-6. Double staining of F-actin and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was conducted to assess myocardial apoptosis. Expressions of ATP synthase subunit δ (ATP 5D), and RhoA and ROCK were determined by Western blotting. Results: Administration with GLXB at high dose for 6 weeks protected heart against I/R-induced MBF decrease, myocardial infarction and apoptosis, ameliorated I/R-caused impairment of cardiac function and myocardial structure, restored the decrease in the ratio of ADP/ATP and AMP/ATP, and the expression of ATP 5D with inhibiting the expression of RhoA and ROCK. Conclusions: Treatment with GLXB effectively protects myocardial structure and function from I/R challenge, possibly via regulating energy metabolism involving inactivation of RhoA/ROCK signaling pathway.

10.
Front Physiol ; 8: 729, 2017.
Article in English | MEDLINE | ID: mdl-29018356

ABSTRACT

Chronic stress induces endocrine disturbance, which contributes to the development of polycystic ovary syndrome (PCOS), a condition that remains a challenge for clinicians to cope with. The present study investigated the effect of Xiao-Yao-San (XYS), a traditional Chinese medicine formula used for treatment of gynecological disease, on the chronic stress-induced polycystic ovary and its underlying mechanism. Female Sprague-Dwaley rats underwent a 3 weeks chronic unpredictable mild stress (CUMS) procedure to establish the PCOS model, followed by 4 weeks treatment with XYS (0.505 g/kg or 1.01 g/kg) by gavage. Granulosa cells were exposed to noradrenaline (1 mM) in vitro for 24 h, followed by incubation with or without XYS-treated rat serum for 24 h. Post-treatment with XYS ameliorated CUMS-induced irregular estrous cycles and follicles development abnormalities, decrease of estradiol and progesterone level as well as increase of luteinizing hormone in serum, reduced cystic follicles formation and the apoptosis and autophagy of granulosa cells, attenuated the increase in dopamine beta hydroxylase and c-fos level in locus coeruleus, the noradrenaline level in serum and ovarian tissue, and the expression of beta 2 adrenergic receptor in ovarian tissue. Besides, XYS alleviated the reduction of phosphorylation of ribosomal protein S6 kinase polypeptide I and protein kinase B, as well as the increase of microtubule-associated protein light chain 3-I to microtubule-associated protein light chain 3-II conversion both in vivo and in vitro. This study demonstrated XYS as a potential strategy for CUMS induced polycystic ovary, and suggested that the beneficial role of XYS was correlated with the regulation of the sympathetic nerve activity.

11.
J Ethnopharmacol ; 208: 24-35, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28648927

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Silibinin Capsules (SC) is a silybin-phospholipid complex with silybin as the bioactive component. Silybin accounts for 50-70% of the seed extract of Silybum marianum (L.) Gaertn.. As a traditional medicine, silybin has been used for treatment of liver diseases and is known to provide a wide range of hepatoprotective effects. AIM OF THE STUDY: High fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) is a worldwide health problem. This study was to investigate the role of SC in NAFLD with focusing on its underlying mechanism and likely target. MATERIALS AND METHODS: Male hamsters (Cricetidae) received HFD for 10 weeks to establish NAFLD model. NAFLD was assessed by biochemical assays, histology and immunohistochemistry. Proton nuclear magnetic resonance spectroscopy and western blot were conducted to gain insight into the mechanism. RESULTS: Hamsters fed HFD for 10 weeks developed fatty liver accompanying with increased triglyceride (TG) accumulation, enhancing de novo lipogenesis, increase in fatty acid (FA) uptake and reducing FA oxidation and TG lipolysis, as well as a decrease in the expression of phospho-adenosine monophosphate activated protein kinase α (p-AMPKα) and Sirt 1. SC treatment at 50mg/kg silybin and 100mg/kg silybin for 8 weeks protected hamsters from development of fatty liver, reducing de novo lipogenesis and increasing FA oxidation and p-AMPKα expression, while having no effect on FA uptake and TG lipolysis. CONCLUSIONS: SC protected against NAFLD in hamsters by inhibition of de novo lipogenesis and promotion of FA oxidation, which was likely mediated by activation of AMPKα.


Subject(s)
Antioxidants/therapeutic use , Fatty Acids/metabolism , Lipogenesis/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Silymarin/therapeutic use , Alanine Transaminase/blood , Animals , Antioxidants/pharmacology , Aspartate Aminotransferases/blood , Capsules , Cricetinae , Diet, High-Fat , Insulin/blood , Liver/drug effects , Liver/metabolism , Male , Non-alcoholic Fatty Liver Disease/metabolism , Oxidation-Reduction , Silybin , Silymarin/pharmacology , Triglycerides/metabolism
12.
Sci Rep ; 7(1): 312, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28331194

ABSTRACT

Frequent and drastic ambient temperature variation may cause respiratory diseases such as common cold and pneumonia, the mechanism for which is not fully understood, however, due to lack of appropriate animal models. Ma-Huang-Tang (MHT) is widely used in China for treatment of respiratory diseases. The present study aimed to investigate the effect of MHT on temperature alternation induced rat lung injury and explore underlying mechanisms. Male Sprague-Dawley rats were exposed to a cold environment for 1 h and then shifted to a warm environment for 30 min. This cold and warm alteration cycled 4 times. Rats were administrated with MHT (1.87 g/kg) by gavage 6 h after cold-warm-cycles. Cold-warm-cycles induced pulmonary microcirculatory disorders, lung edema and injury, decrease in the expression of tight junction proteins, increase in VE-cadherin activation, increase in the expression and activation of Caveolin-1, Src and NF-κB, and NADPH oxidase subunits p47phox, p40phox and p67phox membrane translocation and inflammatory cytokines production. All alterations were significantly ameliorated by post-treatment with MHT. This study showed that rats subjected to cold-warm-cycles may be used as an animal model to investigate ambient temperature variation-induced lung injury, and suggested MHT as a potential strategy to combat lung injury induced by temperature variation.


Subject(s)
Cold Temperature , Drugs, Chinese Herbal/administration & dosage , Environmental Exposure , Hot Temperature , Lung Injury/prevention & control , Animals , Disease Models, Animal , Lung/pathology , Lung/radiation effects , Lung Injury/pathology , Rats, Sprague-Dawley , Treatment Outcome
13.
Article in English | MEDLINE | ID: mdl-28331914

ABSTRACT

BACKGROUND: Increased occurrence of chronic syndromes has prompted researchers to investigate and develop drugs and methods for controlling chronic syndromes with a view to improve human health and reduce early aging. MATERIAL AND METHODS: Human trials: After the allotted multivitamin pills or placebo pills had been taken for a stipulated period of about 2 months, the volunteers filled out feedback forms on curative effects of the pills in line with the health examination reports. The effects of the multivitamin on various symptoms or diseases and dysfunctions of the chronic metabolic syndromes were noted and evaluated based on the information provided in forms. Animal experiments: Mouse aging model induced by D-galactose were administered the multivitamin by oral gavage every morning. At the end of the sixth week, activity or content of the components associated with ageing and anti-aging in the brain and liver of the aging mice were determined to investigate the mechanisms of the new multivitamin on chronic metabolic syndromes and aging. RESULTS: We found that multivitamin can eliminate or attenuate 38 types of symptoms or dysfunctions of the investigated metabolic syndromes; and that it has both preventive and curative/adjunctive therapeutic effects on the metabolic syndromes. The effects of this multivitamin on components associated with aging and anti-aging were significantly decreased - malondialdehyde content and monoamine oxidase activity but significantly increased activity of superoxide dismutase and glutathione peroxidase. This multivitamin has significant anti-aging effects. CONCLUSION: Supplementing with this multivitamin can prevent and provide treatment/adjunctive therapy for these chronic metabolic syndromes and delay the aging process. List of AbbreviationsBWbody weight; Cu/Zn-SOD, cuprum/zinc-superoxide dismutaseMAOmonoamine oxidaseMDAmalondialdehyde; Mn-SOD, manganese-superoxide dismutase; T-SOD, total superoxide dismutase; TP, total protein.


Subject(s)
Aging/drug effects , Metabolic Syndrome/drug therapy , Vitamins/administration & dosage , Adult , Aging/metabolism , Animals , Antioxidants/administration & dosage , Brain/drug effects , Brain/metabolism , Dietary Supplements/analysis , Female , Humans , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/metabolism , Metabolic Syndrome/metabolism , Mice , Middle Aged , Superoxide Dismutase/metabolism
14.
Adv Nutr ; 7(3): 535-43, 2016 05.
Article in English | MEDLINE | ID: mdl-27184280

ABSTRACT

Twenty years ago, there was profound, international interest in developing oral human, bovine, or chicken egg-derived immunoglobulin (Ig) for the prevention and nutritional treatment of childhood malnutrition and gastrointestinal disease, including acute diarrhea and necrotizing enterocolitis. Although such Ig products were shown to be effective, with both nutritional and antidiarrheal benefits, interest waned because of their cost and because of the perceived risk of bovine serum encephalitis (BSE). BSE is no longer considered a barrier to use of oral Ig, because the WHO has declared the United States to be BSE-free since the early 2000s. Low-cost bovine-derived products with high Ig content have been developed and are regulated as medical foods. These new products, called serum bovine Igs (SBIs), facilitate the management of chronic or severe gastrointestinal disturbances in both children and adults and are regulated by the US Food and Drug Administration. Well-established applications for use of SBIs include human immunodeficiency virus (HIV)-associated enteropathy and diarrhea-predominant irritable bowel syndrome. However, SBIs and other similar products could potentially become important components of the treatment regimen for other conditions, such as inflammatory bowel disease, by aiding in disease control without immunosuppressive side effects. In addition, SBIs may be helpful in conditions associated with the depletion of circulating and luminal Igs and could potentially play an important role in critical care nutrition. The rationale for their use is to facilitate intraluminal microbial antibody coating, an essential process in immune recognition in the gut which is disturbed in these conditions, thereby leading to intestinal inflammation. Thus, oral Ig may emerge as an important "add-on" therapy for a variety of gastrointestinal and nutritional problems during the next decade.


Subject(s)
Enteral Nutrition , Gastrointestinal Diseases/drug therapy , Immunoglobulins/therapeutic use , Intestines/drug effects , Malnutrition/prevention & control , Adult , Animals , Cattle , Child , Critical Care , Diarrhea/drug therapy , HIV Enteropathy/drug therapy , Humans , Immunoglobulins/administration & dosage , Immunoglobulins/pharmacology , Inflammation/drug therapy , Intestines/immunology , Intestines/pathology , Malnutrition/therapy , Pediatrics
15.
Microcirculation ; 23(6): 426-37, 2016 08.
Article in English | MEDLINE | ID: mdl-27164060

ABSTRACT

OBJECTIVE: This study was designed to examine the effect of KDZ, on the BBB disruption in rat underwent MCAO and reperfusion. METHODS: Male Sprague-Dawley rats (260-280 g) were subjected to 60 minutes MCAO followed by reperfusion. KDZ (4 mL/kg) was administrated before ischemia. The Evans blue extravasation, albumin leakage, brain water content, TJ proteins, caveolin-1, p-caveolin-1, Src, and p-Src were evaluated. Neurological scores, cerebral infarction, and CBF were assessed. The binding affinity of KDZ to Src was examined. RESULTS: I/R evoked a range of insults including Evans blue extravasation, albumin leakage, brain water content increase, CBF decrease, cerebral infarction, and neurological deficits, all of which were attenuated by KDZ. Meanwhile, KDZ inhibited TJ proteins down-expression, expression of caveolin-1, phosphorylation of caveolin-1 and Src after I/R. In addition, SPR revealed binding of KDZ to Src with high affinity. CONCLUSIONS: KDZ protects BBB from disruption and improves cerebral outcomes following I/R via preventing the degradation of TJ proteins, caveolin-1 expression, and inhibiting p-caveolin-1 and p-Src, which were most likely attributable to the ability of its main ingredients to bind to Src and inhibit its phosphorylation.


Subject(s)
Blood-Brain Barrier/pathology , Drugs, Chinese Herbal/therapeutic use , Neuroprotective Agents/therapeutic use , Reperfusion Injury/pathology , Animals , Blood-Brain Barrier/drug effects , Caveolin 1/antagonists & inhibitors , Caveolin 1/metabolism , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacology , Male , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Phosphorylation/drug effects , Protein Binding , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Tight Junction Proteins/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism
16.
Article in English | MEDLINE | ID: mdl-26504484

ABSTRACT

This study was to explore the protective effects of Deepure tea against insulin resistance and hepatic steatosis and elucidate the potential underlying molecular mechanisms. C57BL/6 mice were fed with a high fat diet (HFD) for 8 weeks to induce the metabolic syndrome. In the Deepure tea group, HFD mice were administrated with Deepure tea at 160 mg/kg/day by gavage for 14 days. The mice in HFD group received water in the same way over the same period. The age-matched C57BL/6 mice fed with standard chow were used as normal control. Compared to the mice in HFD group, mice that received Deepure tea showed significantly reduced plasma insulin and improved insulin sensitivity. Deepure tea increased the expression of insulin receptor substrate 2 (IRS-2), which plays an important role in hepatic insulin signaling pathway. Deepure tea also led to a decrease in hepatic fatty acid synthesis and lipid accumulation, which were mediated by the downregulation of sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthesis (FAS), and acetyl-CoA carboxylase (ACC) proteins that are involved in liver lipogenesis. These results suggest that Deepure tea may be effective for protecting against insulin resistance and hepatic steatosis via modulating IRS-2 and downstream signaling SREBP-1c, FAS, and ACC.

17.
Sci Rep ; 5: 11802, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26136154

ABSTRACT

The present study aimed to explore the holistic mechanism for the antihypertrophic effect of a compound in Chinese medicine, QiShenYiQi Pills (QSYQ) and the contributions of its components to the effect in rats with cardiac hypertrophy (CH). After induction of CH by ascending aortic stenosis, rats were treated with QSYQ, each identified active ingredient (astragaloside IV, 3, 4-dihydroxy-phenyl lactic acid or notoginsenoside R1) from its 3 major herb components or dalbergia odorifera, either alone or combinations, for 1 month. QSYQ markedly attenuated CH, as evidenced by echocardiography, morphology and biochemistry. Proteomic analysis and western blot showed that the majority of differentially expressed proteins in the heart of QSYQ-treated rats were associated with energy metabolism or oxidative stress. Each ingredient alone or their combinations exhibited similar effects as QSYQ but to a lesser extent and differently with astragaloside IV and notoginsenoside R1 being more effective for enhancing energy metabolism, 3, 4-dihydroxy-phenyl lactic acid more effective for counteracting oxidative stress while dalbergia odorifera having little effect on the variables evaluated. In conclusion, QSYQ exerts a more potent antihypertrophic effect than any of its ingredients or their combinations, due to the interaction of its active components through a multi-component and multi-target mode.


Subject(s)
Cardiomegaly/drug therapy , Drugs, Chinese Herbal/administration & dosage , Heart/drug effects , Myocardium/metabolism , Animals , Cardiomegaly/physiopathology , Energy Metabolism/drug effects , Gene Expression Regulation/drug effects , Ginsenosides/administration & dosage , Heart/physiopathology , Oxidative Stress/drug effects , Pressure , Proteomics , Rats , Rats, Sprague-Dawley , Saponins/administration & dosage , Triterpenes/administration & dosage
18.
Microcirculation ; 21(7): 649-63, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24809727

ABSTRACT

OBJECTIVE: The aim of present study was to investigate the efficacy of MXSGT, a traditional Chinese medicine formula used for treatment of respiratory system diseases, in the LPS-induced rat ALI particularly with a focus on its effect on lung microvascular hyperpermeability and inflammatory reaction. METHODS: Male Sprague-Dawley rats were injected with LPS (7.5 mg/kg, 1.5 mg/mL) intraperitoneally. MXSGT (0.52 g or 2.61 g/kg) was given by gavage six hours after LPS injection. RESULTS: LPS stimulation resulted in a reduced survival rate, deteriorated vital signs, an increase in the number of leukocytes adhering to lung venules, the albumin leakage, the activity of MPO in lung tissues, the production of pro-inflammatory cytokines and lung perivascular edema. After LPS stimulation, western blot analysis revealed an increase in the expression of ICAM-1 and toll-like receptor 4, a decrease in tight junction proteins and an activation of cav-1, Src, and NF-κB. All the LPS-induced alterations were significantly attenuated by posttreatment with MXSGT. CONCLUSIONS: This study demonstrated MXSGT as a potential strategy for lung microvascular hyperpermeability and inflammatory reaction in ALI, and suggested that the beneficial role of MXSGT was correlated with toll-like receptor 4, Src, and NF-κB.


Subject(s)
Acute Lung Injury/drug therapy , Capillary Permeability/drug effects , Drugs, Chinese Herbal/therapeutic use , Lung/blood supply , Microvessels/drug effects , Acute Lung Injury/chemically induced , Acute Lung Injury/physiopathology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Caveolae/drug effects , Cell Adhesion , Cytokines/metabolism , Drug Administration Schedule , Drugs, Chinese Herbal/administration & dosage , Inflammation , Intercellular Adhesion Molecule-1/biosynthesis , Intercellular Adhesion Molecule-1/genetics , Leukocytes , Lipopolysaccharides/toxicity , Male , Microvessels/physiopathology , NF-kappa B/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Tight Junction Proteins/biosynthesis , Tight Junction Proteins/genetics , Toll-Like Receptor 4/biosynthesis , Toll-Like Receptor 4/genetics , Venules/drug effects , Venules/physiopathology
19.
J Ethnopharmacol ; 155(1): 147-53, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24814318

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rhynchophylline (Rhy) is a major ingredient of Uncaria rhynchophylla (UR) used to reduce blood pressure and ameliorate brain ailments. This study was to examine the role of Rho kinase (ROCK) in the inhibition of Rhy on contraction of cerebral arterioles caused by endothelin 1 (ET-1). MATERIALS AND METHODS: Cerebral arterioles of male Wistar rats were constricted with ET-1 for 10 min followed by perfusion of Rhy for 20 min. Changes in the diameters of the arterioles were recorded. The effects of Rhy on contraction of middle cerebral arteries (MCAs) were determined by a Multi-Myograph. Western blotting and immunofluorescent staining were used to examine the effects of Rhy on RhoA translocation and myosin phosphatase target subunit 1 (MYPT1) phosphorylation. RESULTS: In vivo, Rhy (30-300 µM) relaxed cerebral arterioles constricted with ET-1 dose-dependently. In vitro, Rhy at lower concentrations (1-100 µM) caused relaxation of rat MCAs constricted with KCl and Bay-K8644 (an agonist of L-type voltage-dependent calcium channels (L-VDCCs)). Rhy at higher concentrations (>100 µM) caused relaxation of rat MCAs constricted with ET-1, which was inhibited by Y27632, a ROCK׳s inhibitor. Western blotting of rat aortas showed that Rhy inhibited RhoA translocation and MYPT1 phosphorylation. Immunofluorescent staining of MCAs confirmed that phosphorylation of MYPT1 caused by ET-1 was inhibited by Rhy. CONCLUSIONS: These results demonstrate that Rhy is a potent inhibitor of contraction of cerebral arteries caused by ET-1 in vivo and in vitro. The effect of Rhy was in part mediated by inhibiting RhoA-ROCK signaling.


Subject(s)
Arterioles/drug effects , Endothelin-1/metabolism , Indole Alkaloids/pharmacology , Uncaria/chemistry , Animals , Arterioles/metabolism , Cerebrum/blood supply , Cerebrum/drug effects , Dose-Response Relationship, Drug , Indole Alkaloids/administration & dosage , Indole Alkaloids/isolation & purification , Male , Oxindoles , Phosphorylation/drug effects , Protein Phosphatase 1/metabolism , Rats , Rats, Wistar , Vasoconstriction/drug effects , Vasodilation/drug effects , rho-Associated Kinases/metabolism
20.
Microcirculation ; 21(7): 615-27, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24702968

ABSTRACT

OBJECTIVE: TSI is a new drug derived from Chinese medicine for treatment of ischemic stroke in China. The aim of this study was to verify the therapeutic effect of TSI in a rat model of MCAO, and further explore the mechanism for its effect. METHODS: Male Sprague-Dawley rats were subjected to right MCAO for 60 minutes followed by reperfusion. TSI (1.67 mg/kg) was administrated before reperfusion via femoral vein injection. Twenty-four hours after reperfusion, the fluorescence intensity of DHR 123 in, leukocyte adhesion to and albumin leakage from the cerebral venules were observed. Neurological scores, TTC staining, brain water content, Nissl staining, TUNEL staining, and MDA content were assessed. Bcl-2/Bax, cleaved caspase-3, NADPH oxidase subunits p47(phox)/p67(phox)/gp91(phox), and AMPK/Akt/PKC were analyzed by Western blot. RESULTS: TSI attenuated I/R-induced microcirculatory disturbance and neuron damage, activated AMPK, inhibited NADPH oxidase subunits membrane translocation, suppressed Akt phosphorylation, and PKC translocation. CONCLUSIONS: TSI attenuates I/R-induced brain injury in rats, supporting its clinic use for treatment of acute ischemic stroke. The role of TSI may benefit from its antioxidant activity, which is most likely implemented via inactivation of NADPH oxidase through a signaling pathway implicating AMPK/Akt/PKC.


Subject(s)
Alkenes/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Infarction, Middle Cerebral Artery/drug therapy , Microcirculation/drug effects , NADPH Oxidases/physiology , Neurons/drug effects , Polyphenols/therapeutic use , Reperfusion Injury/drug therapy , AMP-Activated Protein Kinases/physiology , Alkenes/pharmacology , Animals , Apoptosis/drug effects , Capillary Permeability/drug effects , Cerebral Infarction/etiology , Cerebral Infarction/pathology , Cerebral Infarction/prevention & control , Drugs, Chinese Herbal/pharmacology , Infarction, Middle Cerebral Artery/enzymology , Infarction, Middle Cerebral Artery/physiopathology , Leukocytes/drug effects , Lipid Peroxidation/drug effects , Male , Movement Disorders/etiology , Movement Disorders/prevention & control , Nerve Tissue Proteins/physiology , Neurons/enzymology , Phosphorylation/drug effects , Polyphenols/pharmacology , Protein Kinase C/physiology , Protein Transport/drug effects , Proto-Oncogene Proteins c-akt/physiology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Reperfusion Injury/enzymology , Reperfusion Injury/physiopathology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL