Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Ethnopharmacol ; 303: 115953, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36442760

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke is a significant risk factor for human health, and Buyang Huanwu Decoction is a classical and famous Chinese formula for treating it, but without clear pharmacological mechanism. AIM OF THE STUDY: The aim of this study was to investigate that the molecular mechanism of BYHWD activation of the PKCε/Nrf2 signaling pathway to attenuate cerebral ischemia-reperfusion (I/R) oxidative damage. MATERIALS AND METHODS: The MCAO method was used to establish a brain I/R injury model in SD rats, and neurological deficits were evaluated by neurological function score. Neuronal damage was observed by Nissl staining and immunofluorescence detection of MAP2 expression. Oxidative damage was observed by ROS, SOD, GSH-PX, MDA, and 8-OHdG. Changes in mitochondrial membrane potential were detected by using the fluorescent probe JC-1. The Western blot analysis detected protein expression of PKCε, P-PKCε, total Nrf2, nuclear Nrf2, HO-1, and NQO1. RESULTS: BYHWD significantly enhanced neural function, reduced neuronal damage, inhibited the production of ROS, decreased MDA and 8-OHdG levels, increased SOD and GSH-PX activity to reduce oxidative damage, and restored mitochondrial membrane potential. BYHWD and Nrf2 activator TBHQ increased total Nrf2, nucleus Nrf2 protein expression, and its downstream HO-1 and NQO1 proteins, and the administration of the Nrf2 inhibitor brusatol reduced the enhancing effect of BYHWD. Meanwhile, BYHWD increased the expression of PKCε and P-PKCε and the administration of the PKCε inhibitor εV1-2 reduced the effect of BYHWD in increasing the expression of PKCε, P-PKCε, nuclear Nrf2, and HO-1, as well as promoting the effect of Nrf2 translocation to the nucleus. CONCLUSION: This study marks the first to demonstrate that BYHWD ameliorates oxidative damage and attenuates brain I/R injury by activating the PKCε/Nrf2/HO-1 pathway.


Subject(s)
Brain Ischemia , Reperfusion Injury , Animals , Rats , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cerebral Infarction , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Protein Kinase C-epsilon/metabolism , Protein Kinase C-epsilon/pharmacology , Rats, Sprague-Dawley , Reactive Oxygen Species , Reperfusion , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Signal Transduction , Superoxide Dismutase/metabolism
2.
Phytother Res ; 30(3): 510-6, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26762248

ABSTRACT

Tannic acid (TA) is a group of water-soluble polyphenolic compounds that occur mainly in plant-derived feeds, food grains and fruits. Many studies have explored its biomedical properties, such as anticancer, antibacterial, antimutagenic, antioxidant, antidiabetic, antiinflammatory and antihypertensive activities. However, the effects of TA on the L-type Ca(2+) current (ICa-L) of cardiomyocytes remain undefined. The present study examined the effects of TA on ICa-L using the whole-cell patch-clamp technique and on intracellular Ca(2+) handling and cell contractility in rat ventricular myocytes with the aid of a video-based edge detection system. Exposure to TA resulted in a concentration- and voltage-dependent blockade of ICa-L, with the half maximal inhibitory concentration of 1.69 µM and the maximal inhibitory effect of 46.15%. Moreover, TA significantly inhibited the amplitude of myocyte shortening and peak value of Ca(2+) transient and increased the time to 10% of the peak. These findings provide new experimental evidence for the cellular mechanism of action of TA and may help to expand clinical treatments for cardiovascular disease.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Calcium/metabolism , Heart Ventricles/drug effects , Muscle Contraction/drug effects , Myocytes, Cardiac/drug effects , Tannins/pharmacology , Animals , Calcium Channels, L-Type/metabolism , Heart Ventricles/cytology , Patch-Clamp Techniques , Plant Extracts/pharmacology , Rats
3.
Phytother Res ; 29(9): 1295-1303, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25989747

ABSTRACT

Tannic acid (TA) is a polyphenolic compound, which has shown diverse pharmacological effects with antimutagenic, anticarcinogenic and antibactericidal properties. However, cardioprotective effects of TA have not been reported. To investigate the protective effects of TA, rats were administered TA for 7 days and then intoxicated with isoproterenol (ISO). Myocardial ischemia injury was indicated by changes in electrocardiographic (ECG) patterns, morphology and cardiac marker enzymes. Furthermore, protein expression levels of c-fos, c-jun, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), cleaved-caspase-3 and -9 were analyzed by immunohistochemistry, and activities of apoptosis-related proteins Bax, Bcl-2, caspase-3 and nuclear factor kappa B (NF-κB) were detected by Western blot. Pretreatment with TA ameliorated changes in morphology and ECG, reduced activities of marker enzymes, suppressed overexpression of apoptosis-related proteins, upregulated expression of antioxidants. Moreover, TA pretreatment contributed to the decrease in ratio of Bax/Bcl-2, as well as reduced expression of TNF-α, IL-1ß, caspase-3, cleaved-caspase-3 and -9. TA displayed cardioprotective effects, which may be attributed to lowering of Bax/Bcl-2 ratio, c-fos and c-jun expression and inhibition of NF-κB activation, as well as oxidative stress, inflammation and apoptosis. These findings provide further insight into the 'French paradox' and the mechanisms underlying the beneficial effects of TA. Copyright © 2015 John Wiley & Sons, Ltd.

4.
PLoS One ; 10(4): e0124061, 2015.
Article in English | MEDLINE | ID: mdl-25850001

ABSTRACT

Iron overload cardiomyopathy results from iron accumulation in the myocardium that is closely linked to iron-mediated myocardial fibrosis. Salvia miltiorrhiza (SM, also known as Danshen), a traditional Chinese medicinal herb, has been widely used for hundreds of years to treat cardiovascular diseases. Here, we investigated the effect and potential mechanism of SM on myocardial fibrosis induced by chronic iron overload (CIO) in mice. Kunming male mice (8 weeks old) were randomized to six groups of 10 animals each: control (CONT), CIO, low-dose SM (L-SM), high-dose SM (H-SM), verapamil (VRP) and deferoxamine (DFO) groups. Normal saline was injected in the CONT group. Mice in the other five groups were treated with iron dextran at 50 mg/kg per day intraperitoneally for 7 weeks, and those in the latter four groups also received corresponding daily treatments, including 3 g/kg or 6 g/kg of SM, 100 mg/kg of VRP, or 100 mg/kg of DFO. The iron deposition was estimated histologically using Prussian blue staining. Myocardial fibrosis was determined by Masson's trichrome staining and hydroxyproline (Hyp) quantitative assay. Superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and protein expression levels of type I collagen (COL I), type I collagen (COL III), transforming growth factor-ß1 (TGF-ß1) and matrix metalloproteinase-9 (MMP-9) were analyzed to investigate the mechanisms underlying the effects of SM against iron-overloaded fibrosis. Treatment of chronic iron-overloaded mice with SM dose-dependently reduced iron deposition levels, fibrotic area percentage, Hyp content, expression levels of COL I and COL III, as well as upregulated the expression of TGF- ß1 and MMP-9 proteins in the heart. Moreover, SM treatment decreased MDA content and increased SOD activity. In conclusion, SM exerted activities against cardiac fibrosis induced by CIO, which may be attributed to its inhibition of iron deposition, as well as collagen metabolism and oxidative stress.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Endomyocardial Fibrosis/drug therapy , Iron Overload/drug therapy , Oxidative Stress/drug effects , Salvia miltiorrhiza/metabolism , Animals , Collagen Type I/metabolism , Collagen Type III/metabolism , Deferoxamine/therapeutic use , Iron/metabolism , Iron Overload/pathology , Iron-Dextran Complex/administration & dosage , Malondialdehyde/metabolism , Matrix Metalloproteinase 9/metabolism , Medicine, Chinese Traditional , Mice , Plant Extracts , Random Allocation , Superoxide Dismutase/metabolism , Transforming Growth Factor beta1/metabolism , Verapamil/therapeutic use
5.
Phytother Res ; 29(4): 533-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25586009

ABSTRACT

Acanthopanax senticosus (Rupr. et Maxim.) Harms (AS), a traditional herbal medicine, has been widely used to treat ischemic heart disease. However, the underlying cellular mechanisms of its benefits to cardiac function remain unclear. The present study examined the effects of total flavones from AS (TFAS) on L-type Ca(2+) channel currents (ICa-L ) using the whole cell patch-clamp technique and on intracellular calcium ([Ca(2+) ]i ) handling and cell contractility in rat ventricular myocytes with the aid of a video-based edge-detection system. Exposure to TFAS resulted in a concentration- and voltage-dependent blockade of ICa-L , with the half-maximal inhibitory concentration (IC50 ) of 283.12 µg/mL and the maximal inhibitory effect of 36.49 ± 1.95%. Moreover, TFAS not only increased the maximum current in the current-voltage relationship but also shifted the activation and inactivation curves of ICa-L toward the hyperpolarizing direction. Meanwhile, TFAS significantly reduced amplitudes of myocyte shortening and [Ca(2+) ]i with an increase in the time to 10% of the peak (Tp) and a decrease in the time to 10% of the baseline (Tr). Thus, the cardioprotective effects of TFAS may be attributed mainly to the attenuation of [Ca(2+) ]i through the direct inhibition of ICa-L in rat ventricular myocytes and consequent negative effect on myocardial contractility.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Calcium/metabolism , Eleutherococcus/chemistry , Flavones/pharmacology , Myocytes, Cardiac/drug effects , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Muscle Contraction/drug effects , Myocardial Contraction/drug effects , Myocytes, Cardiac/cytology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL