Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1064-1072, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621913

ABSTRACT

This article explored the mechanism by which ginsenoside Re reduces hypoxia/reoxygenation(H/R) injury in H9c2 cells by regulating mitochondrial biogenesis through nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)/peroxisome prolife-rator-activated receptor gamma coactivator-1α(PGC-1α) pathway. In this study, H9c2 cells were cultured in hypoxia for 4 hours and then reoxygenated for 2 hours to construct a cardiomyocyte H/R injury model. After ginsenoside Re pre-administration intervention, cell activity, superoxide dismutase(SOD) activity, malondialdehyde(MDA) content, intracellular reactive oxygen species(Cyto-ROS), and intramitochondrial reactive oxygen species(Mito-ROS) levels were detected to evaluate the protective effect of ginsenoside Re on H/R injury of H9c2 cells by resisting oxidative stress. Secondly, fluorescent probes were used to detect changes in mitochondrial membrane potential(ΔΨ_m) and mitochondrial membrane permeability open pore(mPTP), and immunofluorescence was used to detect the expression level of TOM20 to study the protective effect of ginsenoside Re on mitochondria. Western blot was further used to detect the protein expression levels of caspase-3, cleaved caspase-3, Cyto C, Nrf2, HO-1, and PGC-1α to explore the specific mechanism by which ginsenoside Re protected mitochondria against oxidative stress and reduced H/R injury. Compared with the model group, ginse-noside Re effectively reduced the H/R injury oxidative stress response of H9c2 cells, increased SOD activity, reduced MDA content, and decreased Cyto-ROS and Mito-ROS levels in cells. Ginsenoside Re showed a good protective effect on mitochondria by increasing ΔΨ_m, reducing mPTP, and increasing TOM20 expression. Further studies showed that ginsenoside Re promoted the expression of Nrf2, HO-1, and PGC-1α proteins, and reduced the activation of the apoptosis-related regulatory factor caspase-3 to cleaved caspase-3 and the expression of Cyto C protein. In summary, ginsenoside Re can significantly reduce I/R injury in H9c2 cells. The specific mechanism is related to the promotion of mitochondrial biogenesis through the Nrf2/HO-1/PGC-1α pathway, thereby increasing the number of mitochondria, improving mitochondrial function, enhancing the ability of cells to resist oxidative stress, and alleviating cell apoptosis.


Subject(s)
Ginsenosides , NF-E2-Related Factor 2 , Organelle Biogenesis , Humans , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Caspase 3/metabolism , Signal Transduction , Oxidative Stress , Hypoxia , Myocytes, Cardiac , Apoptosis , Superoxide Dismutase/metabolism
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1286-1294, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621976

ABSTRACT

This study explored the specific mechanism by which tetrahydropalmatine(THP) inhibited mitophagy through the UNC-51-like kinase 1(ULK1)/FUN14 domain containing 1(FUNDC1) pathway to reduce hypoxia/reoxygenation(H/R) injury in H9c2 cells. This study used H9c2 cells as the research object to construct a cardiomyocyte H/R injury model. First, a cell viability detection kit was used to detect cell viability, and a micro-method was used to detect lactate dehydrogenase(LDH) leakage to evaluate the protective effect of THP on H/R injury of H9c2 cells. In order to evaluate the protective effect of THP on mitochondria, the chemical fluorescence method was used to detect intracellular reactive oxygen species, intramitochondrial reactive oxygen species, mitochondrial membrane potential, and autophagosomes, and the luciferin method was used to detect intracellular adenosine 5'-triphosphate(ATP) content. Western blot was further used to detect the ratio of microtubule-associated protein 1 light chain 3(LC3) membrane type(LC3-Ⅱ) and slurry type(LC3-Ⅰ) and activated cleaved caspase-3 expression level. In addition, ULK1 expression level and its phosphorylation degree at Ser555 site, as well as the FUNDC1 expression level and its phosphorylation degree of Ser17 site were detected to explore its specific mechanism. The results showed that THP effectively reduced mitochondrial damage in H9c2 cells after H/R. THP protected mitochondria by reducing the level of reactive oxygen species in cells and mitochondria, increasing mitochondrial membrane potential, thereby increasing cellular ATP production, enhancing cellular activity, reducing cellular LDH leakage, and finally alleviating H/R damage in H9c2 cells. Further studies have found that THP could reduce the production of autophagosomes, reduce the LC3-Ⅱ/LC3-Ⅰ ratio, and lower the expression of the apoptosis-related protein, namely cleaved caspase-3, indicating that THP could reduce apoptosis by inhibiting autophagy. In-depth studies have found that THP could inhibit the activation of the ULK1/FUNDC1 pathway of mitophagy and the occurrence of mitophagy by reducing the phosphorylation degree of ULK1 at Ser555 and FUNDC1 at Ser17. The application of ULK1 agonist BL-918 reversely verified the effect of THP on reducing the phosphorylation of ULK1 and FUNDC1. In summary, THP inhibited mitophagy through the ULK1/FUNDC1 pathway to reduce H/R injury in H9c2 cells.


Subject(s)
Berberine Alkaloids , Hypoxia , Mitophagy , Phenylacetates , Humans , Mitophagy/physiology , Caspase 3 , Reactive Oxygen Species/metabolism , Apoptosis , Adenosine Triphosphate/pharmacology , Autophagy-Related Protein-1 Homolog/genetics , Intracellular Signaling Peptides and Proteins , Membrane Proteins/metabolism , Mitochondrial Proteins
3.
Zhongguo Zhong Yao Za Zhi ; 49(4): 858-867, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621893

ABSTRACT

Benign prostatic hyperplasia(BPH) is a common disease of the male urinary system, and its incidence rate in China is increasing. However, the mechanism underlying the pathogenesis of BPH remains unclear. Some studies demonstrated that the incidence of BPH was related to the change in the levels of steroid hormones. Too high content of dihydrotestosterone(DHT) in the body may cause BPH and other related diseases. Testosterone(T) is converted to DHT by 5α-reductase(SRD5A). By inhibiting the activity of this enzyme, the production of DHT can be reduced, and then the incidence of BPH can be lowered. Therefore, it has drawn great attention to screen and discover safer and more effective 5α-reductase inhibitors from natural medicines to treat prostatic hyperplasia without affecting the physiological function of men. This review summarizes the characteristics and tissue distribution of 5α-reductase, the discovery of 5α-reductase inhibitors in traditional Chinese medicine and natural medicines, 5α-reductase inhibitors commonly used in clinical practice and their side effects, as well as the animal models of prostatic hyperplasia and common detection indicators, aiming to provide a reference for more in-depth understanding and research about BPH and development of drugs.


Subject(s)
5-alpha Reductase Inhibitors , Prostatic Hyperplasia , Animals , Humans , Male , 5-alpha Reductase Inhibitors/therapeutic use , Cholestenone 5 alpha-Reductase , Dihydrotestosterone , Prostatic Hyperplasia/drug therapy , Testosterone
4.
Int J Biol Macromol ; 265(Pt 1): 130724, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479656

ABSTRACT

The influence of RG-I domains on high methoxyl pectin (HMP) sugar-acid gel properties has rarely been reported. In our work, HMP was modified by enzymatic de-esterification and degradation of RG-I domains to compare and analyze the relationship between the structure and final sugar-acid gel properties. The results showed that the degree of esterification (DE) of REP (pectin degraded by rhamnosidase) and GEP (pectin debranched by galactosidase) was the same as that of untreated HMP, whereas the DE of PMEP (pectin de-esterified by pectin methyl esterase) decreased from 59.63 % to 54.69 %. The monosaccharide composition suggested no significant changes in the HG and RG-I structural domains of PMEP. In contrast, the percentage of RG-I structural domains of REP and GEP dropped from 37 % to about 28 %, accompanied by a reduction in the proportion of the RG-I backbones and side chains. The rheological characterization of sugar-acid gels demonstrated an enhanced gel grade for PMEP and a weakened one for REP and GEP. Moreover, we constructed a correlation relationship between the fine structure of pectin and the properties of the sugar-acid gels, confirming the critical contribution of the RG-I region (especially the neutral sugar side chains) to the HMP sugar-acid gels.


Subject(s)
Pectins , Sugars , Pectins/chemistry , Esterification , Gels/chemistry
5.
Chin J Integr Med ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319525

ABSTRACT

OBJECTIVE: To observe the protective effect and mechanism of hydroxyl safflower yellow A (HSYA) from myocardial ischemia-reperfusion injury on human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs were treated with oxygen-glucose deprivation reperfusion (OGD/R) to simulate the ischemia reperfusion model, and cell counting kit-8 was used to detect the protective effect of different concentrations (1.25-160 µ mol/L) of HSYA on HUVECs after OGD/R. HSYA 80 µ mol/L was used for follow-up experiments. The contents of inflammatory cytokines interleukin (IL)-18, IL-1 ß, monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor α (TNF-α) and IL-6 before and after administration were measured by enzyme-linked immunosorbent assay. The protein expressions of toll-like receptor, NOD-like receptor containing pyrin domain 3 (NLRP3), gasdermin D (GSDMD) and GSDMD-N-terminal domain (GSDMD-N) before and after administration were detected by Western blot. NLRP3 inflammasome inhibitor cytokine release inhibitory drug 3 sodium salt (CRID3 sodium salt, also known as MCC950) and agonist were added, and the changes of NLRP3, cysteine-aspartic acid protease 1 (Caspase-1), GSDMD and GSDMD-N protein expressions were detected by Western blot. RESULTS: HSYA inhibited OGD/R-induced inflammation and significantly decreased the contents of inflammatory cytokines IL-18, IL-1 ß, MCP-1, TNF-α and IL-6 (P<0.01 or P<0.05). At the same time, by inhibiting NLRP3/Caspase-1/GSDMD pathway, HSYA can reduce the occurrence of pyroptosis after OGD/R and reduce the expression of NLRP3, Caspase-1, GSDMD and GSDMD-N proteins (P<0.01). CONCLUSIONS: The protective effect of HSYA on HUVECs after OGD/R is related to down-regulating the expression of NLRP3 inflammasome and inhibiting pyroptosis.

6.
Aquac Nutr ; 2024: 3147505, 2024.
Article in English | MEDLINE | ID: mdl-38374819

ABSTRACT

This study developed a recombinant Bacillus subtilis to carry the LGSPDVIVIR peptide (cmP4) isolated from the hydrolyzed products of cottonseed meal with excellent antioxidant and immune-enhancing properties in vitro. It was carried as a tandem of five cmP4 peptides (cmP4') to be stably expressed on a large scale. Then, its effectiveness was evaluated in Chinese mitten crab (Eriocheir sinensis) based on growth performance, redox defense, and innate immunity. A total of 280 crabs (mean body weight: 41.40 ± 0.14) were randomly assigned to seven diets including a control one (without B. subtilis) and six experimental ones with different doses (107,108, and 109 CFU/kg) of unmodified and recombinant B. subtilis, respectively, for 12 weeks. Each diet was tested in four tanks of crabs (10/tank). In terms of bacterial dosages, the final weight (FW), weight gain (WG), hemolymph and hepatopancreatic activities of superoxide dismutase (SOD), catalase (CAT), lysosome (LZM), acid phosphatase (ACP) and alkaline phosphatase (AKP), and hepatopancreatic transcriptions of cat, mitochondrial manganese superoxide dismutase (mtmnsod), thioredoxin-1 (trx1), and prophenoloxidase (propo) all increased significantly with increasing B. subtilis dosages, while hemolymph and hepatopancreatic malondialdehyde (MDA) content and the transcriptions of toll like receptors (tlrs), NF-κB-like transcription factor (relish), and lipopolysaccharide-induced TNF-α factor (litaf) all decreased remarkably. In terms of bacterial species, the recombinant B. subtilis group obtained significantly high values of FW, WG, hemolymph, and hepatopancreatic activities of SOD, CAT, LZM, ACP, and AKP, and the transcriptions of mtmnsod, peroxiredoxin 6 (prx6), and propo compared with the unmodified B. subtilis, while opposite results were noted in hemolymph and hepatopancreatic MDA content and the transcriptions of tlrs, relish, and litaf. These results indicated that dietary supplementation with 109 CFU/kg of recombinant B. subtilis can improve the growth performance, redox defense, and nonspecific immunity of E. sinensis.

7.
Zhen Ci Yan Jiu ; 48(10): 986-992, 2023 Oct 25.
Article in English, Chinese | MEDLINE | ID: mdl-37879948

ABSTRACT

OBJECTIVES: To observe the effect of motion-style scalp acupuncture (MSSA) on H-reflex in rats with post-stroke spasticity (PSS), so as to explore the electrophysiological mechanisms of MSSA against spasticity. METHODS: A total of 36 male SD rats were randomly divided into sham operation, model and MSSA groups, with 12 rats in each group. The stroke model was established by occlusion of the middle cerebral artery. After modeling, rats in the MSSA group were treated by scalp acupuncture (manipulated every 15 min, 200 r/min) at ipsilesional "parietal and temporal anterior oblique line" (MS6) for a total of 30 min, the treadmill training (10 m/min) was applied during the needling retention, once daily for consecutive 7 days. The neurological deficits, muscle tone and motor function were assessed by Zea Longa score, modified modified Ashworth scale (MMAS) score and screen test score before and after treatment, respectively. The H-reflex of spastic muscle was recorded by electrophysiological recordings and the frequency dependent depression (FDD) of H-reflex was also recorded. The cerebral infarction volume was evaluated by TTC staining. RESULTS: Compared with the sham operation group, the Zea longa score, MMAS score, cerebral infarction volume, motion threshold, Hmax/Mmax ratio and FDD of H-reflex were significantly increased (P<0.01), while the screen test score was significantly decreased (P<0.01) in the model group. Intriguingly, compared with the model group, the above results were all reversed (P<0.01) in the MSSA group. CONCLUSIONS: MSSA could exert satisfactory anti-spastic effects in rats with PSS, the underlying mechanism may be related to the improvement of nerve function injury, the reduction of spastic muscle movement threshold, Hmax/Mmax ratio and H-reflex FDD.


Subject(s)
Acupuncture Therapy , Stroke , Rats , Male , Animals , Muscle Spasticity/etiology , Muscle Spasticity/therapy , Rats, Sprague-Dawley , Scalp , Stroke/complications , Stroke/therapy , Cerebral Infarction
8.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4156-4163, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802784

ABSTRACT

This study explored the effects of Buyang Huanwu Decoction(BYHWD) on platelet activation and differential gene expression after acute myocardial infarction(AMI). SD rats were randomly divided into a sham-operated group, a model group, a positive drug(aspirin) group, and a BYHWD group. Pre-treatment was conducted for 14 days with a daily oral dose of 1.6 g·kg~(-1) BYHWD and 0.1 g·kg~(-1) aspirin. The AMI model was established using the high ligation of the left anterior descending coronary artery method. The detection indicators included myocardial infarct size, heart function, myocardial tissue pathology, peripheral blood flow perfusion, platelet aggregation rate, platelet membrane glycoprotein CD62p expression, platelet transcriptomics, and differential gene expression. The results showed that compared with the sham-operated group, the model group showed reduced ejection fraction and cardiac output, decreased peripheral blood flow, and increased platelet aggregation rate and CD62p expression, and activated platelets. At the same time, TXB_2 content increased and 6-keto-PGF1α content decreased in serum. Compared with the model group, BYHWD increased ejection fraction and cardiac output, improved blood circulation in the foot and tail regions and cardiomyocytes arrangement, reduced myocardial infarct size and inflammatory infiltration, down-regulated platelet aggregation rate and CD62p expression, reduced serum TXB_2 content, and increased 6-keto-PGF1α content. Platelet transcriptome sequencing results revealed that BYHWD regulated mTOR-autophagy pathway-related genes in platelets. The differential gene expression levels were detected using real-time quantitative PCR. BYHWD up-regulated mTOR, down-regulated autophagy-related FUNDC1 and PINK genes, and up-regulated p62 gene expression. The results demonstrated that BYHWD could regulate platelet activation, improve blood circulation, and protect ischemic myocardium in AMI rats, and its mechanism is related to the regulation of the mTOR-autophagy pathway in platelets.


Subject(s)
Drugs, Chinese Herbal , Myocardial Infarction , Rats , Animals , Rats, Sprague-Dawley , Drugs, Chinese Herbal/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , Myocardium/metabolism , Aspirin/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins
9.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4438-4445, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802870

ABSTRACT

This study aimed to investigate the effect and mechanism of Zuogui Jiangtang Qinggan Formula(ZGJTQG) on the glucolipid metabolism of type 2 diabetes mellitus(T2DM) complicated with non-alcoholic fatty liver disease(NAFLD). NAFLD was induced by a high-fat diet(HFD) in MKR mice(T2DM mice), and a model of T2DM combined with NAFLD was established. Forty mice were randomly divided into a model group, a metformin group(0.067 g·kg~(-1)), and high-and low-dose ZGJTQG groups(29.64 and 14.82 g·kg~(-1)), with 10 mice in each group. Ten FVB mice of the same age were assigned to the normal group. Serum and liver tissue specimens were collected from mice except for those in the normal and model groups after four weeks of drug administration by gavage, and fasting blood glucose(FBG) and fasting insulin(FINS) levels were measured. The levels of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein(LDL) were detected by the single reagent GPO-PAP method. Very low-density lipoprotein(VLDL) was detected by enzyme-linked immunosorbent assay(ELISA). Alanine aminotransferase(ALT) and aspartate ami-notransferase(AST) were determined by the Reitman-Frankel assay. The pathological changes in the liver were observed by hematoxylin-eosin(HE) staining and oil red O staining. Real-time fluorescence-based quantitative polymerase chain reaction(real-time PCR) and Western blot were adopted to detect the mRNA and protein expression of forkhead transcription factor O1(FoxO1), microsomal triglyceride transfer protein(MTP), and apolipoprotein B(APOB) in the liver. The results showed that high-dose ZGJTQG could signi-ficantly reduce the FBG and FINS levels(P<0.05, P<0.01), improve glucose tolerance and insulin resistance(P<0.05, P<0.01), alleviate the liver damage caused by HFD which was reflected in improving liver steatosis, and reduce the serum levels of TC, TG, LDL, VLDL, ALT, and AST(P<0.05, P<0.01) in T2DM mice combined with NAFLD. The findings also revealed that the mRNA and protein expression of FoxO1, MTP, and APOB in the liver was significantly down-regulated after the intervention of high-dose ZGJTQG(P<0.05, P<0.01). The above study showed that ZGJTQG could effectively improve glucolipid metabolism in T2DM combined with NAFLD, and the mechanism was closely related to the regulation of the FoxO1/MTP/APOB signaling pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Liver , Lipoproteins, LDL/metabolism , Signal Transduction , Diet, High-Fat/adverse effects , RNA, Messenger/metabolism
10.
Molecules ; 28(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894624

ABSTRACT

Ampelopsis grossedentata (AG) is mainly distributed in Chinese provinces and areas south of the Yangtze River Basin. It is mostly concentrated or scattered in mountainous bushes or woods with high humidity. Approximately 57 chemical components of AG have been identified, including flavonoids, phenols, steroids and terpenoids, volatile components, and other chemical components. In vitro studies have shown that the flavone of AG has therapeutic properties such as anti-bacteria, anti-inflammation, anti-oxidation, enhancing immunity, regulating glucose and lipid metabolism, being hepatoprotective, and being anti-tumor with no toxicity. Through searching and combing the related literature, this paper comprehensively and systematically summarizes the research progress of AG, including morphology, traditional and modern uses, chemical composition and structure, and pharmacological and toxicological effects, with a view to providing references for AG-related research.


Subject(s)
Ampelopsis , Drugs, Chinese Herbal , Plants, Medicinal , Ampelopsis/chemistry , Drugs, Chinese Herbal/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Glucose , Phytochemicals/pharmacology , Ethnopharmacology , Plant Extracts/chemistry
11.
Curr Med Sci ; 43(5): 1051-1060, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37806993

ABSTRACT

OBJECTIVE: Osteogenesis is vitally important for bone defect repair, and Zuo Gui Wan (ZGW) is a classic prescription in traditional Chinese medicine (TCM) for strengthening bones. However, the specific mechanism by which ZGW regulates osteogenesis is still unclear. The current study is based on a network pharmacology analysis to explore the potential mechanism of ZGW in promoting osteogenesis. METHODS: A network pharmacology analysis followed by experimental validation was applied to explore the potential mechanisms of ZGW in promoting the osteogenesis of bone marrow mesenchymal stem cells (BMSCs). RESULTS: In total, 487 no-repeat targets corresponding to the bioactive components of ZGW were screened, and 175 target genes in the intersection of ZGW and osteogenesis were obtained. And 28 core target genes were then obtained from a PPI network analysis. A GO functional enrichment analysis showed that the relevant biological processes mainly involve the cellular response to chemical stress, metal ions, and lipopolysaccharide. Additionally, KEGG pathway enrichment analysis revealed that multiple signaling pathways, including the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway, were associated with ZGW-promoted osteogensis. Further experimental validation showed that ZGW could increase alkaline phosphatase (ALP) activity as well as the mRNA and protein levels of ALP, osteocalcin (OCN), and runt related transcription factor 2 (Runx 2). What's more, Western blot analysis results showed that ZGW significantly increased the protein levels of p-PI3K and p-AKT, and the increases of these protein levels significantly receded after the addition of the PI3K inhibitor LY294002. Finally, the upregulated osteogenic-related indicators were also suppressed by the addition of LY294002. CONCLUSION: ZGW promotes the osteogenesis of BMSCs via PI3K/AKT signaling pathway.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Osteogenesis , Network Pharmacology , Cell Differentiation , Signal Transduction
12.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1547-1554, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37694417

ABSTRACT

Root-associated fungi play a vital role in maintaining nutrient absorption and health of host plants. To compare the responses of root-associated fungal community structures to nitrogen (N) and/or phosphorus (P) additions across differential mycorrhizal types, we collected roots of nine plant species belonging to three mycorrhizal types (arbuscular mycorrhiza, ectomycorrhiza, and ericoid mycorrhiza) under control and N and/or P addition treatments from a subtropical forest, and detected the diversity and community composition of fungi inhabiting roots through the high-throughput sequencing technique. The results showed that root-associated fungal communities of all nine plant species were mainly composed of Basidiomycota and Ascomycota. The relative abundance of Ascomycota and Basidiomycota was significantly lower and higher under the P addition than that under control, respectively. The relative abundance of Ascomycota of ericoid mycorrhizal trees was significantly higher than those of arbuscular mycorrhizal and ectomycorrhizal trees, while the relative abundance of Basidiomycota was significantly lower than the other two mycorrhizal types. Compared with the control, P addition significantly reduced the α-diversity and changed community composition of root-associated fungi across different mycorrhizal plant types, while no effect of N addition or mycorrhizal type was observed. Compared with the control and N addition treatments, NP addition caused root-associated fungal communities of all plants becoming integrally divergent. In addition, the fungal communities of ectomycorrhizal mycorrhizal trees became apparently convergent in comparison with those of arbuscular and ericoid mycorrhizal trees under the NP addition. Collectively, our results highlighted that P was a critical factor influencing community structures of tree root-associated fungi in subtropical forest soils. This study would enhance our understanding of the responses and maintenance mechanisms of plant root-associated fungal diversity under global environmental changes in the subtropical region.


Subject(s)
Mycobiome , Mycorrhizae , Nitrogen , Forests , Trees , Phosphorus
13.
Chin J Integr Med ; 29(12): 1066-1076, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37608040

ABSTRACT

OBJECTIVE: To explore the protective effect of Huoxin Pill (HXP) on acute myocardial ischemia-reperfusion (MIRI) injury in rats. METHODS: Seventy-five adult SD rats were divided into the sham-operated group, model group, positive drug group (diltiazem hydrochloride, DH), high dose group (24 mg/kg, HXP-H) and low dose group (12 mg/kg, HXP-L) of Huoxin Pill (n=15 for every group) according to the complete randomization method. After 1 week of intragastric administration, the left anterior descending coronary artery of the rat's heart was ligated for 45 min and reperfused for 3 h. Serum was separated and the levels of creatine kinase (CK), creatine kinase isoenzyme (CK-MB) and lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), hypersensitive C-reactive protein (hs-CRP) and interleukin-1ß (IL-1ß) were measured. Myocardial ischemia rate, myocardial infarction rate and myocardial no-reflow rate were determined by staining with Evans blue and 2,3,5-triphenyltetrazolium chloride (TTC). Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN) databases were used to screen for possible active compounds of HXP and their potential therapeutic targets; the results of anti-inflammatory genes associated with MIRI were obtained from GeneCards, Drugbank, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Datebase (TTD) databases was performed; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were used to analyze the intersected targets; molecular docking was performed using AutoDock Tools. Western blot was used to detect the protein expression of Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NFκB)/NOD-like receptor protein 3 (NLRP3). RESULTS: Compared with the model group, all doses of HXP significantly reduced the levels of LDH, CK and CK-MB (P<0.05, P<0.01); HXP significantly increased serum activity of SOD (P<0.05, P<0.01); all doses of HXP significantly reduced the levels of hs-CRP and IL-1ß (P<0.05, P<0.01) and the myocardial infarction rate and myocardial no-reflow rate (P<0.01). GO enrichment analysis mainly involved positive regulation of gene expression, extracellular space and identical protein binding, KEGG pathway enrichment mainly involved PI3K-Akt signaling pathway and lipid and atherosclerosis. Molecular docking results showed that kaempferol and luteolin had a better affinity with TLR4, NFκB and NLRP3 molecules. The protein expressions of TLR4, NFκB and NLRP3 were reduced in the HXP group (P<0.01). CONCLUSIONS: HXP has a significant protective effect on myocardial ischemia-reperfusion injury in rats, and its effect may be related to the inhibition of redox response and reduction of the inflammatory response by inhibiting the TLR4NFκB/NLRP3 signaling pathway.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Humans , Rats , Animals , NF-kappa B/metabolism , Myocardial Reperfusion Injury/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , C-Reactive Protein , Toll-Like Receptor 4 , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Signal Transduction , Myocardial Infarction/drug therapy , Creatine Kinase , L-Lactate Dehydrogenase/metabolism , Superoxide Dismutase/metabolism
14.
Acta Pharmacol Sin ; 44(12): 2347-2357, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37532784

ABSTRACT

SARS-CoV-2 infection causes injuries of not only the lungs but also the heart and endothelial cells in vasculature of multiple organs, and induces systemic inflammation and immune over-reactions, which makes COVID-19 a disease phenome that simultaneously affects multiple systems. Cardiovascular diseases (CVD) are intrinsic risk and causative factors for severe COVID-19 comorbidities and death. The wide-spread infection and reinfection of SARS-CoV-2 variants and the long-COVID may become a new common threat to human health and propose unprecedented impact on the risk factors, pathophysiology, and pharmacology of many diseases including CVD for a long time. COVID-19 has highlighted the urgent demand for precision medicine which needs new knowledge network to innovate disease taxonomy for more precise diagnosis, therapy, and prevention of disease. A deeper understanding of CVD in the setting of COVID-19 phenome requires a paradigm shift from the current phenotypic study that focuses on the virus or individual symptoms to phenomics of COVID-19 that addresses the inter-connectedness of clinical phenotypes, i.e., clinical phenome. Here, we summarize the CVD manifestations in the full clinical spectrum of COVID-19, and the phenome-wide association study of CVD interrelated to COVID-19. We discuss the underlying biology for CVD in the COVID-19 phenome and the concept of precision medicine with new phenomic taxonomy that addresses the overall pathophysiological responses of the body to the SARS-CoV-2 infection. We also briefly discuss the unique taxonomy of disease as Zheng-hou patterns in traditional Chinese medicine, and their potential implications in precision medicine of CVD in the post-COVID-19 era.


Subject(s)
COVID-19 , Cardiovascular Diseases , Humans , Cardiovascular Diseases/genetics , Phenomics , Precision Medicine , SARS-CoV-2/genetics , Post-Acute COVID-19 Syndrome , Endothelial Cells
15.
Stem Cell Res Ther ; 14(1): 230, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37649087

ABSTRACT

Inflammation is the host's protective response against harmful external stimulation that helps tissue repair and remodeling. However, excessive inflammation seriously threatens the patient's life. Due to anti-inflammatory effects, corticosteroids, immunosuppressants, and monoclonal antibodies are used to treat various inflammatory diseases, but drug resistance, non-responsiveness, and severe side effect limit their development and application. Therefore, developing other alternative therapies has become essential in anti-inflammatory therapy. In recent years, the in-depth study of stem cells has made them a promising alternative drug for the treatment of inflammatory diseases, and the function of stem cells is regulated by a variety of signals, of which dopamine signaling is one of the main influencing factors. In this review, we review the effects of dopamine on various adult stem cells (neural stem cells, mesenchymal stromal cells, hematopoietic stem cells, and cancer stem cells) and their signaling pathways, as well as the application of some critical dopamine receptor agonists/antagonists. Besides, we also review the role of various adult stem cells in inflammatory diseases and discuss the potential anti-inflammation function of dopamine receptors, which provides a new therapeutic target for regenerative medicine in inflammatory diseases.


Subject(s)
Adult Stem Cells , Mesenchymal Stem Cells , Neural Stem Cells , Adult , Humans , Dopamine , Hematopoietic Stem Cells , Inflammation/therapy
16.
Chin J Integr Med ; 29(12): 1099-1110, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37594702

ABSTRACT

OBJECTIVE: To investigate the involvement of endothelial cells (ECs)-derived exosomes in the anti-apoptotic effect of Danhong Injection (DHI) and the mechanism of DHI-induced exosomal protection against postinfarction myocardial apoptosis. METHODS: A mouse permanent myocardial infarction (MI) model was established, followed by a 14-day daily treatment with DHI, DHI plus GW4869 (an exosomal inhibitor), or saline. Phosphate-buffered saline (PBS)-induced ECs-derived exosomes were isolated, analyzed by miRNA microarray and validated by droplet digital polymerase chain reaction (ddPCR). The exosomes induced by DHI (DHI-exo), PBS (PBS-exo), or DHI+GW4869 (GW-exo) were isolated and injected into the peri-infarct zone following MI. The protective effects of DHI and DHI-exo on MI hearts were measured by echocardiography, Masson's trichrome staining, and TUNEL apoptosis assay. The Western blotting and quantitative reverse transcription PCR (qRT-PCR) were used to evaluate the expression levels of miR-125b/p53-mediated pathway components, including miR-125b, p53, Bak, Bax, and caspase-3 activities. RESULTS: DHI significantly improved cardiac function and reduced infarct size in MI mice (P<0.01), which was abolished by the GW4869 intervention. DHI promoted the exosomal secretion in ECs (P<0.01). According to the results of exosomal miRNA microarray assay, 30 differentially expressed miRNAs in the DHI-exo were identified (28 up-regulated miRNAs and 2 down-regulated miRNAs). Among them, DHI significantly elevated miR-125b level in DHI-exo and DHI-treated ECs, a recognized apoptotic inhibitor impeding p53 signaling (P<0.05). Remarkably, treatment with DHI and DHI-exo attenuated apoptosis, elevated miR-125b expression level, inhibited capsase-3 activity, and down-regulated the expression levels of proapoptotic effectors (p53, Bak, and Bax) in post-MI hearts, whereas these effects were blocked by GW4869 (P<0.05 or P<0.01). CONCLUSION: DHI and DHI-induced exosomes inhibited apoptosis, promoted the miR-125b expression level, and regulated the p53 apoptotic pathway in post-infarction myocardium.


Subject(s)
Exosomes , MicroRNAs , Myocardial Infarction , Mice , Animals , Tumor Suppressor Protein p53/metabolism , Endothelial Cells/metabolism , Exosomes/metabolism , bcl-2-Associated X Protein/metabolism , Myocardium/metabolism , Myocardial Infarction/complications , Myocardial Infarction/drug therapy , Apoptosis , MicroRNAs/genetics , MicroRNAs/metabolism
17.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2103-2115, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282899

ABSTRACT

As a large family of transcription factors, the MYB family plays a vital role in regulating flower development. We studied the MYB family members in Lonicera macranthoides for the first time and identified three sequences of 1R-MYB, 47 sequences of R2R3-MYB, two sequences of 3R-MYB, and one sequence of 4R-MYB from the transcriptome data. Further, their physicochemical properties, conserved domains, phylogenetic relationship, protein structure, functional information, and expression were analyzed. The results show that the 53 MYB transcription factors had different conserved motifs, physicochemical properties, structures, and functions in wild type and 'Xianglei' cultivar of L. macranthoides, indicating their conservation and diversity in evolution. The transcript level of LmMYB was significantly different between the wild type and 'Xianglei' cultivar as well as between flowers and leaves, and some genes were specifically expressed. Forty-three out of 53 LmMYB sequences were expressed in both flowers and leaves, and 9 of the LmMYB members showed significantly different transcript levels between the wild type and 'Xianglei' cultivar, which were up-regulated in the wild type. The results provide a theoretical basis for further studying the specific functional mechanism of the MYB family.


Subject(s)
Lonicera , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Lonicera/metabolism , Phylogeny , Plant Proteins/metabolism , Gene Expression Regulation, Plant
18.
BMJ Open Qual ; 12(2)2023 05.
Article in English | MEDLINE | ID: mdl-37130695

ABSTRACT

Hypocalcaemia following thyroid surgery can occur in up to 38% of patients. With over 7100 thyroid surgeries performed in 2018 in the UK, this is a common postoperative complication. Undertreated hypocalcaemia can result in cardiac arrhythmias and death. Preventing adverse events from hypocalcaemia requires preoperative identification and treatment of at-risk patients with vitamin D deficiency, timely recognition of postoperative hypocalcaemia and prompt appropriate treatment with calcium supplementation. This project aimed to design and implement a perioperative protocol for prevention, detection and management of post-thyroidectomy hypocalcaemia. A retrospective audit of thyroid surgeries (n=67; October 2017 to June 2018) was undertaken to establish baseline practice of (1) preoperative vitamin D levels assessment, (2) postoperative calcium checks and incidence of postoperative hypocalcaemia and (3) management of postoperative hypocalcaemia. A multidisciplinary team approach following quality improvement principles was then used to design a perioperative management protocol with all relevant stakeholders involved. After dissemination and implementation, the above measures were reassessed prospectively (n=23; April-July 2019). The percentage of patients having their preoperative vitamin D measured increased from 40.3% to 65.2%. Postoperative day-of-surgery calcium checks increased from 76.1% to 87.0%. Hypocalcaemia was detected in 26.8% of patients before and 30.43% of patients after protocol implementation. The postoperative component of the protocol was followed in 78.3% of patients. Limitations include low number of patients which precluded from analysis of the impact of the protocol on length of stay. Our protocol provides a foundation for preoperative risk stratification and prevention, early detection and subsequent management of hypocalcaemia in thyroidectomy patients. This aligns with enhanced recovery protocols. Moreover, we offer suggestions for others to build on this quality improvement project with the aim to further advance the perioperative care of thyroidectomy patients.


Subject(s)
Hypocalcemia , Humans , Hypocalcemia/etiology , Hypocalcemia/prevention & control , Hypocalcemia/diagnosis , Calcium , Thyroid Gland , Retrospective Studies , Quality Improvement , State Medicine , Vitamin D , Thyroidectomy/adverse effects , Thyroidectomy/methods
19.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1229-1237, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005807

ABSTRACT

Eleutherococcus senticosus is one of the Dao-di herbs in northeast China. In this study, the chloroplast genomes of three E. senticosus samples from different genuine producing areas were sequenced and then used for the screening of specific DNA barcodes. The germplasm resources and genetic diversity of E. senticosus were analyzed basing on the specific DNA barcodes. The chloroplast genomes of E. senticosus from different genuine producing areas showed the total length of 156 779-156 781 bp and a typical tetrad structure. Each of the chloroplast genomes carried 132 genes, including 87 protein-coding genes, 37 tRNAs, and 8 rRNAs. The chloroplast genomes were relatively conserved. Sequence analysis of the three chloroplast genomes indicated that atpI, ndhA, ycf1, atpB-rbcL, ndhF-rpl32, petA-psbJ, psbM-psbD, and rps16-psbK can be used as specific DNA barcodes of E. senticosus. In this study, we selected atpI and atpB-rbcL which were 700-800 bp and easy to be amplified for the identification of 184 E. senticosus samples from 13 genuine producing areas. The results demonstrated that 9 and 10 genotypes were identified based on atpI and atpB-rbcL sequences, respectively. Furthermore, the two barcodes identified 23 genotypes which were named H1-H23. The haplotype with the highest proportion and widest distribution was H10, followed by H2. The haplotype diversity and nucleotide diversity were 0.94 and 1.82×10~(-3), respectively, suggesting the high genetic diversity of E. senticosus. The results of the median-joining network analysis showed that the 23 genotypes could be classified into 4 categories. H2 was the oldest haplotype, and it served as the center of the network characterized by starlike radiation, which suggested that population expansion of E. senticosus occurred in the genuine producing areas. This study lays a foundation for the research on the genetic quality and chloroplast genetic engineering of E. senticosus and further research on the genetic mechanism of its population, providing new ideas for studying the genetic evolution of E. senticosus.


Subject(s)
DNA Barcoding, Taxonomic , Eleutherococcus , Eleutherococcus/genetics , Base Sequence , Chloroplasts/genetics , Genetic Variation , Phylogeny
20.
Ying Yong Sheng Tai Xue Bao ; 34(3): 639-646, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37087646

ABSTRACT

We conducted a nitrogen (N) and phosphorus (P) addition experiment in Qianjiangyuan National Park in 2015, to investigate the response of ammonia-oxidizing microorganisms and denitrifying microorganisms. There were four treatments, including N addition (N), P addition (P), NP, and control (CK). Soil samples were collected in April (wet season) and November (dry season) of 2021. The abundance of amoA gene of ammonia-oxidizing microorganisms (i.e., ammonia-oxidizing archaea, AOA; ammonia-oxidizing bacteria, AOB; comammox) and denitrifying microbial genes (i.e., nirS, nirK, and nosZ) were determined using quantitative PCR approach. The results showed that soil pH was significantly decreased by long-term N addition, while soil ammonium and nitrate contents were significantly increased. Soil available P and total P contents were significantly increased with the long-term P addition. The addition of N (N and NP treatments) significantly increased the abundance of AOB-amoA gene in both seasons, and reached the highest in the N treatment around 8.30×107 copies·g-1 dry soil. The abundance of AOA-amoA gene was significantly higher in the NP treatment than that in CK, with the highest value around 1.17×109 copies·g-1 dry soil. There was no significant difference in N-related gene abundances between two seasons except for the abundance of comammox-amoA. Nitrogen addition exerted significant effect on the abundance of AOB-amoA, nirK and nosZ genes, especially in wet season. Phosphorus addition exerted significant effect on the abundance of AOA-amoA and AOB-amoA genes in both seasons, but did not affect denitrifying gene abundances. Soil pH, ammonium, nitrate, available P, and soil water contents were the main factors affecting the abundance of soil N-related functional genes. In summary, the response of soil ammonia-oxidizing microorganisms and denitrifying microorganisms was more sensitive to N addition than to P addition. These findings shed new light for evaluating soil nutrient availability as well as their response mechanism to global change in subtropical forests.


Subject(s)
Ammonium Compounds , Bacteria , Bacteria/genetics , Ammonia , Phosphorus , Nitrates , Oxidation-Reduction , Soil Microbiology , Archaea/genetics , Forests , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL