Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
JBMR Plus ; 4(9): e10392, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32995694

ABSTRACT

Bone and energy metabolism are integrated by common regulatory mechanisms. Carboxypeptidase E (CPE), also known as obesity susceptibility protein or neurotrophic factor-α1, is recognized for its function in processing prohormones, including proinsulin and pro-opiomelanocortin polypeptide. Independent of its enzymatic activity, CPE may also act as a secreted factor with divergent roles in neuroprotection and cancer growth; however, its role in the regulation of bone mass and skeletal cell differentiation is unknown. Male mice with global deficiency in CPE are characterized with profound visceral obesity, low bone mass in both appendicular and axial skeleton, and high volume of marrow fat. Interestingly, although metabolic deficit of CPE KO mice develops early in life, bone deficit develops in older age, suggesting that CPE bone-specific activities differ from its enzymatic activities. Indeed, mutated CPE knockin (mCPE KI) mice ectopically expressing CPE-E342Q, a mutated protein lacking enzymatic activity, develop the same obese phenotype and accumulate the same volume of marrow fat as CPE KO mice, but their bone mass is normal. In addition, differentiation of marrow hematopoietic cells toward tartrate-resistant acid phosphatase-positive multinucleated osteoclasts is highly increased in CPE KO mice, but normal in mCPE KI mice. Moreover, in murine skeletal stem cells, nonenzymatic trophic CPE has activated ERK signaling, increased cell proliferation and increased mitochondrial activity. Treatment of preosteoblastic cells with intact or mutated recombinant CPE led to a transient accumulation of small lipid droplets, increased oxidative phosphorylation, and increased cellular dependence on fatty acids as fuel for energy production. In human marrow aspirates, CPE expression increases up to 30-fold in osteogenic conditions. These findings suggest that nonenzymatic and trophic activities of CPE regulate bone mass, whereas marrow adiposity is controlled by CPE enzymatic activity. Thus, CPE can be positioned as a factor regulating simultaneously bone and energy metabolism through a combination of shared and distinct mechanisms. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

2.
Am J Physiol Endocrinol Metab ; 299(2): E189-97, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20460579

ABSTRACT

Carboxypeptidase E (CPE) is a prohormone/proneuropeptide processing enzyme, and mice bearing CPE mutations exhibit an obese and diabetic phenotype. Studies on CPE knockout (KO) mice revealed poor prohormone processing, resulting in deficiencies in peptide hormones/neuropeptides such as insulin, gonadotropin-releasing hormone, and cocaine- and amphetamine-regulated transcript (CART). Here, we show that CPE KO mice, an obese animal model, have low bone mineral density (BMD) accompanied by elevated plasma CTX-1 (carboxy-terminal collagen crosslinks), and osteocalcin, indicators of increased bone turnover. Receptor activator for NF-kappaB ligand (RANKL) expression was elevated approximately 2-fold relative to osteoprotegerin in the femur of KO animals, suggesting increased osteoclastic activity in the KO mice. In the hypothalamus, mature CART, a peptide involved in eating behavior and implicated in bone metabolism, was undetectable. The melanocortin and neuropeptide Y (NPY) systems in the hypothalamus have also been implicated in bone remodeling, since MC4R KO and NPY KO mice have increased BMD. However, reduction of alpha-MSH, the primary ligand of MC4R by up to 94% and the lack of detectable NPY in the hypothalamus of CPE KO do not recapitulate the single-gene KO phenotypes. This study highlights the complex physiological interplay between peptides involved in energy metabolism and bone formation and furthermore suggests the possibility that patients, bearing CPE and CART mutations leading to inactive forms of these molecules, may be at a higher risk of developing osteoporosis.


Subject(s)
Bone Density/physiology , Carboxypeptidase H/genetics , Carboxypeptidase H/physiology , Obesity/enzymology , Peptide Hormones/metabolism , Absorptiometry, Photon , Animals , Biomarkers , Bone Remodeling/physiology , Bone Resorption/genetics , Bone Resorption/metabolism , Calcium/blood , Enzyme-Linked Immunosorbent Assay , Female , Hypothalamus/metabolism , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuropeptide Y/metabolism , Osteoclasts/metabolism , Osteoprotegerin/biosynthesis , Pituitary Gland, Intermediate/metabolism , Protein Array Analysis , RANK Ligand/biosynthesis , RANK Ligand/genetics , alpha-MSH/metabolism
3.
Nat Med ; 15(10): 1195-201, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19767734

ABSTRACT

Reduced food intake brings about an adaptive decrease in energy expenditure that contributes to the recidivism of obesity after weight loss. Insulin and leptin inhibit food intake through actions in the central nervous system that are partly mediated by the transcription factor FoxO1. We show that FoxO1 ablation in pro-opiomelanocortin (Pomc)-expressing neurons in mice (here called Pomc-Foxo1(-/-) mice) increases Carboxypeptidase E (Cpe) expression, resulting in selective increases of alpha-melanocyte-stimulating hormone (alpha-Msh) and carboxy-cleaved beta-endorphin, the products of Cpe-dependent processing of Pomc. This neuropeptide profile is associated with decreased food intake and normal energy expenditure in Pomc-Foxo1(-/-) mice. We show that Cpe expression is downregulated by diet-induced obesity and that FoxO1 deletion offsets the decrease, protecting against weight gain. Moreover, moderate Cpe overexpression in the arcuate nucleus phenocopies features of the FoxO1 mutation. The dissociation of food intake from energy expenditure in Pomc-Foxo1(-/-) mice represents a model for therapeutic intervention in obesity and raises the possibility of targeting Cpe to develop weight loss medications.


Subject(s)
Carboxypeptidase H/genetics , Eating/physiology , Forkhead Transcription Factors/metabolism , Neurons/physiology , Obesity/genetics , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Carboxypeptidase H/metabolism , Female , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Hypothalamus/metabolism , Male , Mice , Mice, Knockout , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Signal Transduction/genetics , alpha-MSH/genetics , alpha-MSH/metabolism , beta-Endorphin/genetics , beta-Endorphin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL