Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Insects ; 15(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276825

ABSTRACT

Honey bee colonies have great societal and economic importance. The main challenge that beekeepers face is keeping bee colonies healthy under ever-changing environmental conditions. In the past two decades, beekeepers that manage colonies of Western honey bees (Apis mellifera) have become increasingly concerned by the presence of parasites and pathogens affecting the bees, the reduction in pollen and nectar availability, and the colonies' exposure to pesticides, among others. Hence, beekeepers need to know the health condition of their colonies and how to keep them alive and thriving, which creates a need for a new holistic data collection method to harmonize the flow of information from various sources that can be linked at the colony level for different health determinants, such as bee colony, environmental, socioeconomic, and genetic statuses. For this purpose, we have developed and implemented the B-GOOD (Giving Beekeeping Guidance by computational-assisted Decision Making) project as a case study to categorize the colony's health condition and find a Health Status Index (HSI). Using a 3-tier setup guided by work plans and standardized protocols, we have collected data from inside the colonies (amount of brood, disease load, honey harvest, etc.) and from their environment (floral resource availability). Most of the project's data was automatically collected by the BEEP Base Sensor System. This continuous stream of data served as the basis to determine and validate an algorithm to calculate the HSI using machine learning. In this article, we share our insights on this holistic methodology and also highlight the importance of using a standardized data language to increase the compatibility between different current and future studies. We argue that the combined management of big data will be an essential building block in the development of targeted guidance for beekeepers and for the future of sustainable beekeeping.

2.
J Mol Diagn ; 22(6): 782-793, 2020 06.
Article in English | MEDLINE | ID: mdl-32205289

ABSTRACT

Polyglutamine spinocerebellar ataxias (SCAs) constitute a group of autosomal dominantly inherited neurodegenerative disorders with considerable phenotypic overlap. Definitive diagnoses rely on the detection of a mutation in each associated locus, comprising the abnormal expansion of the trinucleotide cytosine-adenine-guanine (CAG) in coding exons. Assessment of single nucleotide polymorphisms associated with the CAG expansion in the context of SCAs is also relevant for improving molecular diagnosis and for generating novel therapeutic strategies. The current study is focused on Machado-Joseph disease/SCA type 3, with the aim of developing a protocol for the accurate determination of the CAG length in exon 10 of the human ATXN3 gene and to characterize flanking polymorphisms. A single pair of primers was designed and validated, and two complementary PCR-based methods were established. In method I, PCR amplicons were cloned and sequenced, allowing the assessment of three single nucleotide polymorphisms in the vicinity of the CAG repeat (C987GG/G987GG, TAA1118/TAC1118, and C1178/A1178), which can constitute potential targets for personalized gene-based therapies. Method II combines PCR, capillary electrophoresis, and a size correction formula, enabling a time and cost-effective determination of the number of CAGs. The established protocol paves the way to overcome technical difficulties related to the molecular characterization of the CAG motif and intragenic polymorphisms in the context of Machado-Joseph disease/SCA type 3 and may prove useful when applied to other polyglutamine SCAs.


Subject(s)
Adenine , Ataxin-3/genetics , Cytosine , Guanine , Machado-Joseph Disease/diagnosis , Machado-Joseph Disease/genetics , Polymorphism, Single Nucleotide , Repressor Proteins/genetics , Trinucleotide Repeat Expansion/genetics , Alleles , Case-Control Studies , Exons , Humans , Machado-Joseph Disease/blood , Polymerase Chain Reaction
3.
J Manag Care Spec Pharm ; 26(2): 104-116, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32011956

ABSTRACT

BACKGROUND: As life expectancy of patients infected with human immunodeficiency virus (HIV) approaches that of the general population, the composition of HIV management costs is likely to change. OBJECTIVES: To (a) review treatment and disease management costs in HIV, including costs of adverse events (AEs) related to antiretroviral therapy (ART) and long-term toxicities, and (b) explore the evolving cost drivers. METHODS: A targeted literature review between January 2012 and November 2017 was conducted using PubMed and major conferences. Articles reporting U.S. costs of HIV management, acquired immunodeficiency syndrome (AIDS)-defining events, end of life care, and ART-associated comorbidities such as cardiovascular disease (CVD), chronic kidney disease (CKD), and osteoporosis were included. All costs were inflated to 2017 U.S. dollars. A Markov model-based analysis was conducted to estimate the effect of increased life expectancy on costs associated with HIV treatment and management. RESULTS: 22 studies describing HIV costs in the United States were identified, comprising 16 cost-effectiveness analysis studies, 5 retrospective analyses of health care utilization, and 1 cost analysis in a resource-limited setting. Management costs per patient per month, including routine care costs (on/off ART), non-HIV medication, opportunistic infection prophylaxis, inpatient utilization, outpatient utilization, and emergency department utilization were reported as CD4+ cell-based health state costs ranging from $1,192 for patients with CD4 > 500 cells/mm3 to $2,873 for patients with CD4 < 50 cells/mm3. Event costs for AEs ranged from $0 for headache, pain, vomiting, and lipodystrophy to $31,545 for myocardial infarction. The mean monthly per-patient costs for CVD management, CKD management, and osteoporosis were $5,898, $6,108, and $4,365, respectively. Improvements in life expectancy, approaching that of the general population in 2018, are projected to increase ART-related and AE costs by 35.4% and comorbidity costs by 175.8% compared with estimated costs with HIV life expectancy observed in 1996. CONCLUSIONS: This study identified and summarized holistic cost estimates appropriate for use within U.S. HIV cost-effectiveness analyses and demonstrates an increasing contribution of comorbidity outcomes, primarily associated with aging in addition to long-term treatment with ART, not typically evaluated in contemporary HIV cost-effectiveness analyses. DISCLOSURES: This analysis was sponsored by ViiV Healthcare, which had no role in the analyses and interpretation of study results. Ward, Sugrue, Hayward, and McEwan are employees of HEOR Ltd, which received funding from ViiV Healthcare to conduct this study. Anderson is an employee of GlaxoSmithKline and holds shares in the company. Punekar and Oglesby are employees of ViiV Healthcare and hold shares in GlaxoSmithKline. Lopes was employed by ViiV Healthcare at the time of the study and holds shares in GlaxoSmithKline.


Subject(s)
Anti-HIV Agents/administration & dosage , HIV Infections/drug therapy , Health Care Costs/statistics & numerical data , Anti-HIV Agents/economics , CD4 Lymphocyte Count , Comorbidity , Cost-Benefit Analysis , HIV Infections/economics , Humans , Life Expectancy , United States
4.
Mem. Inst. Oswaldo Cruz ; 110(8): 1024-1034, Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769826

ABSTRACT

The herbaceous shrub Tetradenia riparia has been traditionally used to treat inflammatory and infectious diseases. Recently, a study showed that T. riparia essential oil (TrEO) obtained in summer has antileishmanial effects, although these results could be influenced by seasonal variation. This study evaluated the activity of the TrEO obtained in different seasons against Leishmania (Leishmania) amazonensis, in vitro and in vivo. The compounds in the TrEO were analysed by gas chromatography-mass spectrometry; terpenoids were present and oxygenated sesquiterpenes were the majority compounds (55.28%). The cytotoxicity and nitric oxide (NO) production were also tested after TrEO treatment. The TrEO from all seasons showed a 50% growth inhibitory concentration for promastigotes of about 15 ng/mL; at 30 ng/mL and 3 ng/mL, the TrEO reduced intracellular amastigote infection, independently of season. The TrEO from plants harvested in summer had the highest 50% cytotoxic concentration, 1,476 ng/mL for J774.A1 macrophages, and in spring (90.94 ng/mL) for murine macrophages. NO production did not change in samples of the TrEO from different seasons. The antileishmanial effect in vivo consisted of a reduction of the parasite load in the spleen. These results suggest that the TrEO has potential effects on L. (L.) amazonensis, consonant with its traditional use to treat parasitic diseases.


Subject(s)
Animals , Female , Antiprotozoal Agents/pharmacology , Lamiaceae/chemistry , Leishmania/drug effects , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Antiprotozoal Agents/isolation & purification , Cytotoxins/pharmacology , Gas Chromatography-Mass Spectrometry , Growth Inhibitors/pharmacology , In Vitro Techniques , Leishmania/classification , Lymph Nodes/parasitology , Mice, Inbred BALB C , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Nitric Oxide/analysis , Oils, Volatile/chemistry , Parasite Load , Plant Extracts/chemistry , Plant Leaves/chemistry , Seasons , Sesquiterpenes/analysis , Spleen/parasitology , Time Factors
5.
Mem Inst Oswaldo Cruz ; 110(8): 1024-34, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26602873

ABSTRACT

The herbaceous shrub Tetradenia riparia has been traditionally used to treat inflammatory and infectious diseases. Recently, a study showed that T. riparia essential oil (TrEO) obtained in summer has antileishmanial effects, although these results could be influenced by seasonal variation. This study evaluated the activity of the TrEO obtained in different seasons against Leishmania (Leishmania) amazonensis, in vitro and in vivo. The compounds in the TrEO were analysed by gas chromatography-mass spectrometry; terpenoids were present and oxygenated sesquiterpenes were the majority compounds (55.28%). The cytotoxicity and nitric oxide (NO) production were also tested after TrEO treatment. The TrEO from all seasons showed a 50% growth inhibitory concentration for promastigotes of about 15 ng/mL; at 30 ng/mL and 3 ng/mL, the TrEO reduced intracellular amastigote infection, independently of season. The TrEO from plants harvested in summer had the highest 50% cytotoxic concentration, 1,476 ng/mL for J774.A1 macrophages, and in spring (90.94 ng/mL) for murine macrophages. NO production did not change in samples of the TrEO from different seasons. The antileishmanial effect in vivo consisted of a reduction of the parasite load in the spleen. These results suggest that the TrEO has potential effects on L. (L.) amazonensis, consonant with its traditional use to treat parasitic diseases.


Subject(s)
Antiprotozoal Agents/pharmacology , Lamiaceae/chemistry , Leishmania/drug effects , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Animals , Antiprotozoal Agents/isolation & purification , Cytotoxins/pharmacology , Female , Gas Chromatography-Mass Spectrometry , Growth Inhibitors/pharmacology , In Vitro Techniques , Inhibitory Concentration 50 , Leishmania/classification , Lymph Nodes/parasitology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Mice, Inbred BALB C , Nitric Oxide/analysis , Oils, Volatile/chemistry , Parasite Load , Plant Extracts/chemistry , Plant Leaves/chemistry , Seasons , Sesquiterpenes/analysis , Spleen/parasitology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL