Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Food Biochem ; 44(11): e13443, 2020 11.
Article in English | MEDLINE | ID: mdl-32815169

ABSTRACT

Hepatic damage has been recognized as one of the major complications in diabetes mellitus. Our previous studies have verified that grape seed procyanidin B2 (GSPB2) played a protective effect on hepatic damage of diabetes. We used isobaric tag for relative and absolute quantitation proteomics here to identify the alterant mitochondrial protein profile in diabetic liver and to seek the protective targets of GSPB2. Proteomics found that 171 proteins were upregulated or downregulated in the liver mitochondria of diabetic group compared to the control group. Of these proteins, 61 were normalized after GSPB2 treatment. These back-regulated proteins are involved in the process of fatty acid oxidation, tricarboxylic acid cycle, oxidative phosphorylation, oxidative stress, and apoptosis. Some differentially expressed proteins were confirmed by western blotting. Our study might help to better understand the mechanism of mitochondrial dysfunction in diabetic liver damage, and provide novel targets for estimating the protective effects of GSPB2. PRACTICAL APPLICATIONS: Grape seed procyanidin B2 (GSPB2), a polyphenolic component found in red wine and grapes, has beneficial effects such as antioxidative stress, antiapoptosis, and cardiovascular protection. We used proteomics here to identify the differentially expressed mitochondrial proteins in diabetic liver after GSPB2 treatment and to seek the protective targets of GSPB2. We found that the differentially expressed proteins were involved in carbon metabolism, oxidative phosphorylation, fatty acid metabolism, citrate cycle, oxidative stress, and apoptosis. These proteins may play a key role in diabetic hepatic damage as functional proteins. Targeting these proteins including apply of GSPB2 could potentially lead to an effective treatment in the diabetic hepatic disease.


Subject(s)
Grape Seed Extract , Mitochondria, Liver , Proteomics , Vitis , Animals , Biflavonoids , Catechin , Grape Seed Extract/pharmacology , Mice , Proanthocyanidins , Seeds
2.
Biochim Biophys Acta ; 1832(6): 805-16, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23474305

ABSTRACT

Diabetic nephropathy, as a severe microvascular complication of diabetic mellitus, has become the leading cause of end-stage renal diseases. However, no effective therapeutic strategy has been developed to prevent renal damage progression to end stage renal disease. Hence, the present study evaluated the protective effects of grape seed procyanidin B2 (GSPB2) and explored its molecular targets underlying diabetic nephropathy by a comprehensive quantitative proteomic analysis in db/db mice. Here, we found that oral administration of GSPB2 significantly attenuated the renal dysfunction and pathological changes in db/db mice. Proteome analysis by isobaric tags for relative and absolute quantification (iTRAQ) identified 53 down-regulated and 60 up-regulated proteins after treatment with GSPB2 in db/db mice. Western blot analysis confirmed that milk fat globule EGF-8 (MFG-E8) was significantly up-regulated in diabetic kidney. MFG-E8 silencing by transfection of MFG-E8 shRNA improved renal histological lesions by inhibiting phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), Akt and glycogen synthase kinase-3beta (GSK-3ß) in kidneys of db/db mice. In contrast, over-expression of MFG-E8 by injection of recombinant MFG-E8 resulted in the opposite effects. GSPB2 treatment significantly decreased protein levels of MFG-E8, phospho-ERK1/2, phospho-Akt, and phospho-GSK-3ß in the kidneys of db/db mice. These findings yield insights into the pathogenesis of diabetic nephropathy, revealing MFG-E8 as a new therapeutic target and indicating GSPB2 as a prospective therapy by down-regulation of MFG-E8, along with ERK1/2, Akt and GSK-3ß signaling pathway.


Subject(s)
Antigens, Surface/biosynthesis , Biflavonoids/pharmacology , Catechin/pharmacology , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , MAP Kinase Signaling System/drug effects , Milk Proteins/biosynthesis , Proanthocyanidins/pharmacology , Up-Regulation/drug effects , Animals , Antigens, Surface/genetics , Biflavonoids/chemistry , Catechin/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Diabetic Nephropathies/prevention & control , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Grape Seed Extract/chemistry , Grape Seed Extract/pharmacokinetics , Kidney/metabolism , Kidney/pathology , MAP Kinase Signaling System/genetics , Male , Mice , Milk Proteins/genetics , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Proanthocyanidins/chemistry , Proteomics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation/genetics
3.
PLoS One ; 7(12): e52541, 2012.
Article in English | MEDLINE | ID: mdl-23285083

ABSTRACT

BACKGROUND: Atherosclerosis is one of the major complications of type 2 diabetic patients (T2DM), leading to morbidity and mortality. Grape seed procyanidin B2 (GSPB2) has demonstrated protective effect against atherosclerosis, which is believed to be, at least in part, a result of its antioxidative effects. The aim of this study is to identify the target protein of GSPB2 responsible for the protective effect against atherosclerosis in patients with DM. METHODS AND RESULTS: GSPB2 (30 mg/kg body weight/day) were administrated to db/db mice for 10 weeks. Proteomics of the aorta extracts by iTRAQ analysis was obtained from db/db mice. The results showed that expression of 557 proteins were either up- or down-regulated in the aorta of diabetic mice. Among those proteins, 139 proteins were normalized by GSPB2 to the levels comparable to those in control mice. Among the proteins regulated by GSPB2, the milk fat globule epidermal growth factor-8 (MFG-E8) was found to be increased in serum level in T2DM patients; the serum level of MFG-E8 was positively correlated with carotid-femoral pulse wave velocity (CF-PWV). Inhibition of MFG-E8 by RNA interference significantly suppressed whereas exogenous recombinant MFG-E8 administration exacerbated atherogenesis the db/db mice. To gain more insights into the mechanism of action of MFG-E8, we investigated the effects of MFG-E8 on the signal pathway involving the extracellular signal-regulated kinase (ERK) and monocyte chemoattractant protein-1 (MCP-1). Treatment with recombinant MFG-E8 led to increased whereas inhibition of MFG-E8 to decreased expression of MCP-1 and phosphorylation of ERK1/2. CONCLUSION: Our data suggests that MFG-E8 plays an important role in atherogenesis in diabetes through both ERK and MCP-1 signaling pathways. GSPB2, a well-studied antioxidant, significantly inhibited the arterial wall changes favoring atherogenesis in db/db mice by down-regulating MFG-E8 expression in aorta and its serum level. Measuring MFG-E8 serum level could be a useful clinical surrogate prognosticating atherogenesis in DM patients.


Subject(s)
Antigens, Surface/metabolism , Aorta/metabolism , Aorta/pathology , Biflavonoids/therapeutic use , Catechin/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Milk Proteins/metabolism , Proanthocyanidins/therapeutic use , Proteomics , Aged , Animals , Antigens, Surface/blood , Aorta/drug effects , Aorta/ultrastructure , Biflavonoids/pharmacology , Blood Glucose/drug effects , Body Weight/drug effects , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Catechin/pharmacology , Cholesterol/blood , Computational Biology , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Fasting/blood , Glycation End Products, Advanced/blood , Grape Seed Extract/pharmacology , Grape Seed Extract/therapeutic use , Humans , Isotope Labeling , Male , Mice , Mice, Inbred C57BL , Milk Proteins/blood , Proanthocyanidins/pharmacology , Proteome/metabolism , RNA Interference/drug effects , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL