Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Biol Chem ; 300(3): 105759, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367666

ABSTRACT

Genome-wide association studies have reported a correlation between a SNP of the RING finger E3 ubiquitin protein ligase rififylin (RFFL) and QT interval variability in humans (Newton-Cheh et al., 2009). Previously, we have shown that RFFL downregulates expression and function of the human-like ether-a-go-go-related gene potassium channel and corresponding rapidly activating delayed rectifier potassium current (IKr) in adult rabbit ventricular cardiomyocytes. Here, we report that RFFL also affects the transient outward current (Ito), but in a peculiar way. RFFL overexpression in adult rabbit ventricular cardiomyocytes significantly decreases the contribution of its fast component (Ito,f) from 35% to 21% and increases the contribution of its slow component (Ito,s) from 65% to 79%. Since Ito,f in rabbits is mainly conducted by Kv4.3, we investigated the effect of RFFL on Kv4.3 expressed in HEK293A cells. We found that RFFL overexpression reduced Kv4.3 expression and corresponding Ito,f in a RING domain-dependent manner in the presence or absence of its accessory subunit Kv channel-interacting protein 2. On the other hand, RFFL overexpression in Kv1.4-expressing HEK cells leads to an increase in both Kv1.4 expression level and Ito,s, similarly in a RING domain-dependent manner. Our physiologically detailed rabbit ventricular myocyte computational model shows that these yin and yang effects of RFFL overexpression on Ito,f, and Ito,s affect phase 1 of the action potential waveform and slightly decrease its duration in addition to suppressing IKr. Thus, RFFL modifies cardiac repolarization reserve via ubiquitination of multiple proteins that differently affect various potassium channels and cardiac action potential duration.


Subject(s)
Myocytes, Cardiac , Shal Potassium Channels , Ubiquitin-Protein Ligases , Animals , Humans , Rabbits , Action Potentials/physiology , Genome-Wide Association Study , Myocytes, Cardiac/metabolism , Potassium/metabolism , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , HEK293 Cells
2.
J Environ Public Health ; 2022: 3741370, 2022.
Article in English | MEDLINE | ID: mdl-35795536

ABSTRACT

Accurate prediction of crude oil prices (COPs) is a challenge for academia and industry. Therefore, the present research developed a new CEEMDAN-GA-SVR hybrid model to predict COPs, incorporating complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), a genetic algorithm (GA), and support vector regression machine (SVR). First, our team utilized CEEMDAN to realize the decomposition of a raw series of COPs into a group of comparatively simpler subseries. Second, SVR was utilized to predict values for every decomposed subseries separately. Owing to the intricate parametric settings of SVR, GA was employed to achieve the parametric optimisation of SVR during forecast. Then, our team assembled the forecasted values of the entire subseries as the forecasted values of the CEEMDAN-GA-SVR model. After a series of experiments and comparison of the results, we discovered that the CEEMDAN-GA-SVR model remarkably outperformed single and ensemble benchmark models, as displayed by a case study finished based on a time series of weekly Brent COPs.


Subject(s)
Petroleum , Support Vector Machine , Forecasting
3.
Am J Physiol Heart Circ Physiol ; 304(4): H589-99, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23241319

ABSTRACT

KCNQ1 and hERG encode the voltage-gated potassium channel α-subunits of the cardiac repolarizing currents I(Ks) and I(Kr), respectively. These currents function in vivo with some redundancy to maintain appropriate action potential durations (APDs), and loss-of-function mutations in these channels manifest clinically as long QT syndrome, characterized by the prolongation of the QT interval, polymorphic ventricular tachycardia, and sudden cardiac death. Previous cellular electrophysiology experiments in transgenic rabbit cardiomyocytes and heterologous cell lines demonstrated functional downregulation of complementary repolarizing currents. Biochemical assays indicated direct, protein-protein interactions between KCNQ1 and hERG may underlie the interplay between I(Ks) and I(Kr). Our objective was to investigate hERG-KCNQ1 interactions in the intact cellular environment primarily through acceptor photobleach FRET (apFRET) experiments. We quantitatively assessed the extent of interactions based on fluorophore location and the potential regulation of interactions by physiologically relevant signals. apFRET experiments established specific hERG-KCNQ1 associations in both heterologous and primary cardiomyocytes. The largest FRET efficiency (E(f); 12.0 ± 5.2%) was seen between ion channels with GFP variants fused to the COOH termini. Acute treatment with forskolin + IBMX or a membrane-permeable cAMP analog significantly and specifically reduced the extent of hERG-KCNQ1 interactions (by 41 and 38%, respectively). Our results demonstrate direct interactions between KCNQ1 and hERG occur in both intact heterologous cells and primary cardiomyocytes and are mediated by their COOH termini. Furthermore, this interplay between channel proteins is regulated by intracellular cAMP.


Subject(s)
Cyclic AMP/chemistry , Ether-A-Go-Go Potassium Channels/chemistry , KCNQ1 Potassium Channel/chemistry , 1-Methyl-3-isobutylxanthine/administration & dosage , Action Potentials/physiology , Animals , CHO Cells , Cells, Cultured , Colforsin/administration & dosage , Cricetinae , Cricetulus , Cyclic AMP/agonists , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/physiology , Female , HEK293 Cells , Heart/drug effects , Heart/physiology , Humans , KCNQ1 Potassium Channel/physiology , Male , Phosphodiesterase Inhibitors/administration & dosage , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL