Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
J Environ Manage ; 356: 120502, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479281

ABSTRACT

Effective removal of phosphorus from water is crucial for controlling eutrophication. Meanwhile, the post-disposal of wetland plants is also an urgent problem that needs to be solved. In this study, seedpods of the common wetland plant lotus were used as a new raw material to prepare biochar, which were further modified by loading nano La(OH)3 particles (LBC-La). The adsorption performance of the modified biochar for phosphate was evaluated through batch adsorption and column adsorption experiments. Adsorption performance of lotus seedpod biochar was significantly improved by La(OH)3 modification, with adsorption equilibrium time shortened from 24 to 4 h and a theoretical maximum adsorption capacity increased from 19.43 to 52.23 mg/g. Moreover, LBC-La maintained a removal rate above 99% for phosphate solutions with concentrations below 20 mg/L. The LBC-La exhibited strong anti-interference ability in pH (3-9) and coexisting ion experiments, with the removal ratio remaining above 99%. The characterization analysis indicated that the main mechanism is the formation of monodentate or bidentate lanthanum phosphate complexes through inner sphere complexation. Electrostatic adsorption and ligand exchange are also the mechanisms of LBC-La adsorption of phosphate. In the dynamic adsorption experiment of simulated wastewater treatment plant effluent, the breakthrough point of the adsorption column was 1620 min, reaching exhaustion point at 6480 min, with a theoretical phosphorus saturation adsorption capacity of 6050 mg/kg. The process was well described by the Thomas and Yoon-Nelson models, which indicated that this is a surface adsorption process, without the internal participation of the adsorbent.


Subject(s)
Lotus , Water Pollutants, Chemical , Phosphorus , Wastewater , Phosphates/chemistry , Charcoal , Adsorption , Lanthanum/chemistry , Water Pollutants, Chemical/chemistry , Seeds , Kinetics
2.
Chemosphere ; 231: 184-193, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31129399

ABSTRACT

Hydrolyzed polyacrylamide (HPAM) is the most widely used water-soluble linear polymer with high molecular weight in polymer flooding. Microbiological degradation is an environment-friendly and effective method of treating HPAM-containing oilfield produced water. In this study, a strain SZK-5 that could degrade HPAM was isolated from soil contaminated by oilfield produced water. Based on morphological, biochemical characteristics and 16S rDNA sequence homology analysis, the strain was identified as Bacillus megaterium. The biodegradation capability of strain SZK-5 was determined by incubation in a mineral salt medium (MSM) containing HPAM under different environmental conditions, showing 55.93% of the HPAM removed after 7 d of incubation under the optimum conditions ((NH4)2SO4 = 1667.9 mg L-1, temperature = 24.05 °C and pH = 8.19). Cytochrome P450 (CYP) and urease (URE) played significant roles in biological carbon and nitrogen removal, respectively. The strain SZK-5 could resist the damages caused by oxidative stress given by crude oil and HPAM. To our knowledge, this is the first report about the biodegradation of HPAM by B. megaterium. These results suggest that strain SZK-5 might be a new auxiliary microbiological resource for the biodegradation of HPAM residue in wastewater and soil.


Subject(s)
Acrylic Resins/metabolism , Bacillus megaterium/metabolism , Biodegradation, Environmental , Acrylic Resins/analysis , Antioxidants/metabolism , Bacillus megaterium/enzymology , Carbon , Hydrolysis , Nitrogen , Oil and Gas Fields , Petroleum , Wastewater
3.
Environ Sci Pollut Res Int ; 24(2): 1578-1587, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27787703

ABSTRACT

Four laboratory-scale baffled subsurface-flow constructed wetlands (BSCWs) were established for the treatment of greenhouse wastewater containing high levels of nitrate and sulfate in the present study. Each BSCW microcosm involved a treatment zone and another post-treatment zone with a surface area ratio of 2:1. Evenly mixed straws of carnation and rose (w/w: 1/1), two common ornamental flowers, were supplemented as an organic carbon source into the treatment zone through a hydrolysis zone (CW 1), decentralized vertically installed perforated pipes (CW 2), and centralized pipes (CW 3 in the figures), except the blank system. Removals and transformations of nitrogen and sulfate as well as carbon release in the BSCWs were investigated and comparatively assessed. Results showed that the supplements of flower straws could greatly enhance both the nitrate and sulfate removals, and good performance was achieved during the beginning operation period of 30 days, followed by decline due to insufficient organic carbon supply. Nitrate removal efficiency was significantly higher and more stable compared to sulfate. The highest removal rates of nitrate and sulfate were achieved in the CW 3, with a mean value of 4.33 g NO3--N·m-2 d-1 and 2.74 g SO42--S·m-2 d-1, respectively, although the differences among the experimental microcosms were not statistically significant. However, almost the same TN removal rate (3.40-3.47 g N·m-2 d-1) was obtained due to the productions of NO2--N and NH4+-N and leaching of organic N from the straws. High contents of organic carbon and colored substance were leached from the straws during the initial 10 days, but dropped rapidly to low levels, and could hardly determined after 30 days operation. The post-treatment zone could further eliminate various contaminants, but the capability was limited. Inorganic carbon (IC) concentration was detected to be a highly good indicator for the estimation of nitrate and sulfate removal efficiencies of the BSCWs, particularly for nitrate.


Subject(s)
Carbon/metabolism , Environment, Controlled , Flowers/chemistry , Waste Management/methods , Wastewater/chemistry , Wetlands , Biodegradation, Environmental , Hydrolysis , Nitrates/isolation & purification , Nitrates/metabolism , Sulfates/isolation & purification , Sulfates/metabolism
4.
J Biomol Screen ; 10(5): 524-31, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16093562

ABSTRACT

A fully automated, solid-to-solid weighing workstation (patent pending) is described in this article. The core of this automated process is the use of an electrostatically charged pipette tip to attract solid particles on its outside surface. The particles were then dislodged into a 1.2-mL destination vial in a microbalance by spinning the pipette tip. Textures of solid that could be weighed included powder, crystalline, liquid, and semi-solid substances. The workstation can pick up submilligram quantities of sample (=0.3mg) from source vials containing as little as 1mg. The destination vials containing the samples were stored in a 96-well rack to enable subsequent automated liquid handling. Using bovine serum albumin as test solid, the coefficient of variation of the protein concentration for 48 samples is less than 6%. The workstation was used successfully to weigh out 48 different synthetic compounds. Time required for automated weighing was similar to manual weighing. The use of this workstation reduced 90% hands-on time and thus exposure to potentially toxic compounds. In addition, it minimized sample waste and reduced artifacts due to the poor solubility of compound in solvents. Moreover, it enabled compounds synthesized in milligram quantities to be weighed out and tested in biological assays.


Subject(s)
Drug Evaluation, Preclinical/instrumentation , Drug Evaluation/instrumentation , Animals , Automation , Cattle , Computers , Reproducibility of Results , Serum Albumin/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL