Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Heliyon ; 10(8): e29156, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644822

ABSTRACT

Background: The occurrence and development of sepsis are related to the excessive production of oxygen free radicals and the weakened natural clearance mechanism. Further dependable evidence is required to clarify the effectiveness of antioxidant therapy, especially its impact on short-term mortality. Objectives: The purpose of this systematic review and meta-analysis was to evaluate the effect of common antioxidant therapy on short-term mortality in patients with sepsis. Methods: According to PRISMA guidelines, a systematic literature search on antioxidants in adults sepsis patients was performed on PubMed/Medline, Embase, and the Cochrane Library from the establishment of the database to November 2023. Antioxidant supplements can be a single-drug or multi-drug combination: HAT (hydrocortisone, ascorbic acid, and thiamine), ascorbic acid, thiamine, N-acetylcysteine and selenium. The primary outcome was the effect of antioxidant treatment on short-term mortality, which included 28-day mortality, in-hospital mortality, intensive care unit mortality, and 30-day mortality. Subgroup analyses of short-term mortality were used to reduce statistical heterogeneity and publication bias. Results: Sixty studies of 130,986 sepsis patients fulfilled the predefined criteria and were quantified and meta-analyzed. Antioxidant therapy reduces the risk of short-term death in sepsis patients by multivariate meta-analysis of current data, including a reduction of in-hospital mortality (OR = 0.81, 95% CI 0.67 to 0.99; P = 0.040) and 28-day mortality (OR = 0.81, 95% CI 0.69 to 0.95]; P = 0.008). Particularly in subgroup analyses, ascorbic acid treatment can reduce in-hospital mortality (OR = 0.66, 95% CI 0.90 to 0.98; P = 0.006) and 28-day mortality (OR = 0.43, 95% CI 0.24 to 0.75; P = 0.003). However, the meta-analysis of RCTs found that antioxidant therapy drugs, especially ascorbic acid, did substantially reduce short-term mortality(OR = 0.78, 95% CI 0.62 to 0.98; P = 0.030; OR = 0.57, 95% CI 0.36 to 0.91; P = 0.020). Conclusions: According to current data of RCTs, antioxidant therapy, especially ascorbic acid, has a trend of improving short-term mortality in patients with sepsis, but the evidence remains to be further demonstrated.

2.
Shock ; 60(2): 238-247, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37314209

ABSTRACT

ABSTRACT: T cell exhaustion is the main cause of sepsis-induced immunosuppression and is associated with the poor prognosis. Nicotinamide adenine dinucleotide (NAD + ) is well known for its anti-aging effect, but its role in sepsis-induced T cell exhaustion remains to be elucidated. In the present study, using a classic septic animal model, we found that the levels of NAD + and its downstream molecule, which is sirtuins 1 (SIRT1), in T cells in sepsis were decreased. Supplementation with nicotinamide ribose (NR), the precursor of NAD + , right after cecal ligation and puncture significantly increased the levels of NAD + and SIRT1. Supplementation with NR alleviated the depletion of mononuclear cells and T lymphocytes in spleen in sepsis and increased the levels of CD3 + CD4 + and CD3 + CD8 + T cells. Interestingly, both Th1 and Th2 cells were expanded after NR treatment, but the balance of Th1/Th2 was partly restored. Nicotinamide ribose also inhibited the regulatory T cells expansion and programmed cell death 1 expression in CD4 + T cells in sepsis. In addition, the bacteria load, organ damage (lung, heart, liver, and kidney), and the mortality of septic mice were reduced after NR supplementation. In summary, these results demonstrate the beneficial effect of NR on sepsis and T cell exhaustion, which is associated with NAD + /SIRT1 pathway.


Subject(s)
NAD , Sepsis , Mice , Animals , NAD/metabolism , Sirtuin 1 , T-Cell Exhaustion , Dietary Supplements , Sepsis/drug therapy
3.
Cytokine ; 59(1): 79-85, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22549180

ABSTRACT

High mobility group box 1 protein (HMGB1) was recently discovered to be a critical late-acting cytokine and innate immune-modulating factor in sepsis, but the potential role and mechanism of HMGB1 in adaptive immunity remains elusive. The present study demonstrated that HMGB1 had a dual influence on immune function of CD4(+) T lymphocytes. Low dose of HMGB1 had no effect on the proliferation activity of CD4(+) T lymphocytes, but the Th1 cytokines production was increased. In contrast, treatment with high amount of HMGB1 suppressed the proliferative response and induced Th2 polarization of CD4(+) T lymphocytes. We found that the expression of mitofusin-2 (Mfn2; also named hyperplasia suppressor gene), a member of the mitofusin family, was decreased in CD4(+) T lymphocytes when stimulated with high dose of HMGB1. Up-regulation of Mfn2 attenuated the suppressive effect of HMGB1 on CD4(+) T lymphocytes, which was associated with profound elevation of intracellular calcium concentration ([Ca(2+)](i)) and nuclear factor of activated T cells (NFAT) activity. These results indicate that HMGB1 have a direct role on adaptive immunity, and the decrease of Mfn2 expression may be a major cause of HMGB1-mediated immune dysfunction and Ca(2+)-NFAT signaling defect of CD4(+) T lymphocytes.


Subject(s)
CD4-Positive T-Lymphocytes/pathology , Calcium Signaling/drug effects , Cytoprotection/drug effects , GTP Phosphohydrolases/genetics , HMGB1 Protein/pharmacology , NFATC Transcription Factors/metabolism , Up-Regulation/drug effects , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Concanavalin A/pharmacology , GTP Phosphohydrolases/metabolism , Green Fluorescent Proteins/metabolism , Humans , Interleukin-2/biosynthesis , Male , Mice , Mice, Inbred BALB C , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL