Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Poult Sci ; 100(4): 100982, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33647715

ABSTRACT

The application of probiotics in broiler feed, to alleviate performance deficiencies due to mild infections by coccidia and Clostridium perfringens, is of increasing interest for the poultry industry. Therefore, our objective was to evaluate the capacity of 3 Bacillus strains and their combination as probiotics in vitro and in vivo. Thus, protein and carbohydrate degradation and C. perfringens growth inhibition capabilities were assessed by colometry measurement and an agar diffusion bioassay, respectively. A total of 2,250 1-day-old male broiler chicks were assigned to 5 dietary treatments: 1) non-probiotic-supplemented control (control); 2) control + DSM 32324 at 0.8 × 106 cfu/g of feed; 3) control + DSM 32325 at 0.5 × 106 cfu/g of feed; 4) control + DSM 25840 at 0.3 × 106 cfu/g of feed; and 5) control + DSM 32324 + DSM 32325 + DSM 25840 at 1.6 × 106 cfu/g of feed. A pathogenic field strain of C. perfringens was used to induce the necrotic enteritis challenge on day 19, 20, and 21. All birds and remaining feed were weighed on pen basis on day 0, 21, 35, and 42, to calculate BW gain and mortality-adjusted feed conversion. Mortality and mortality due to necrotic enteritis were recorded daily. On day 21, 45 birds per treatment were evaluated for macroscopic intestinal necrotic enteritis lesions. Performance data were statistically analyzed using an ANOVA and subjected to a least significant difference comparison. Necrotic enteritis lesion scores were statistically analyzed using nonparametric Kruskal-Wallis test. Dunn's test was used for treatment comparison. The tested strains showed different abilities of degrading protein and carbohydrates and inhibiting C. perfringens growth in vitro. The birds fed the multi-train combination presented significantly better performance and lower necrotic enteritis lesion score than those in the control group. Dietary supplementation with probiotics resulted in significantly lower necrotic enteritis mortality. The results demonstrate the suitability of the evaluated Bacillus multistrain combination as an effective probiotic in C. perfringens-challenged chickens.


Subject(s)
Bacillus , Clostridium Infections , Enteritis , Poultry Diseases , Probiotics , Animal Feed/analysis , Animals , Chickens , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Clostridium perfringens , Dietary Supplements , Enteritis/prevention & control , Enteritis/veterinary , Male , Poultry Diseases/prevention & control
2.
Avian Dis ; 64(3): 365-373, 2020 09 01.
Article in English | MEDLINE | ID: mdl-33205164

ABSTRACT

Necrotic enteritis (NE) is a common and costly disease of poultry caused by virulent toxigenic strains of Clostridium perfringens. Although the importance of trace minerals for intestinal integrity and health is well documented, there is little information on their role in ameliorating the effects of NE. The two studies reported here examined the effects of replacing a portion of the dietary zinc (Zn), copper (Cu), and manganese (Mn) supplied as sulfates in the control diets with metal-amino acid-complexed minerals in a NE-challenge model consisting of coccidiosis and Clostridium perfringens. In a 28-day battery study, the treatments were the following: (1) no additional Zn or Mn, unchallenged (negative control); (2) no added Zn or Mn, challenged (positive control); (3) added ZnSO4 and MnSO4 at 100 ppm each, challenged; (4) additional ZnSO4 at 60 ppm, Availa-Zn at 40 ppm (Low), and MnSO4 at 100 ppm, challenged; (5) added ZnSO4 at 60 ppm, Availa-Zn at 60 ppm (high), and MnSO4 at 100 ppm, challenged; and (6) added ZnSO4 at 60 ppm, Availa-Zn at 40 ppm, MnSO4 at 60 ppm, and Availa-Mn at 40 ppm, challenged. None of the treatments ameliorated gross lesion scores, but all reduced NE-associated mortality compared with the positive control. At 28 days, the group supplemented with Availa-Zn at 40 ppm (low) had a lower body weight than challenged groups supplemented with Zn and the negative control. In a floor pen study, the five treatment groups were the following: (1) Zn, Mn, and Cu from sulfate sources at 100, 100, and 20 ppm respectively; (2) Zn, Mn, and Cu from sulfate sources at 40, 100, and 20 ppm, respectively, plus Zn from Availa-Zn at 60 ppm; (3) Zn and Mn from sulfate sources at 40 and 100 ppm, respectively, plus Zn from Availa-Zn at 60 ppm and Cu from Availa-Cu at 10 ppm; (4) Zn, Mn, and Cu from sulfate sources at 60, 60, and 20 ppm, respectively, plus Zn and Mn from Availa-Zn/Mn at 40 and 40 ppm, respectively; and (5) bacitracin methylene disalicylate at 55 g/metric ton with Zn, Mn, and Cu from sulfate sources at 100, 100, and 20 ppm, respectively (Zoetis, Inc., Kalamazoo, MI). None of the treatments reduced lesion scores. The Availa-Zn and Availa-Zn/Mn had lower mortality than the sulfate-supplemented feed, whereas Availa-Zn/Cu and bacitracin methylene disalicylate were intermediate and did not differ from the other groups. Considering both trials together, and by using NE mortality as the discriminating factor, we found that adding Zn and Mn exceeding National Research Council requirements reduced NE-associated mortality, and in the floor pen study, complexed Zn and complexed Zn plus Mn appeared to be superior to sulfates.


Subject(s)
Chickens , Enteritis/veterinary , Manganese/metabolism , Necrosis/veterinary , Poultry Diseases/prevention & control , Trace Elements/metabolism , Zinc/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Clostridium Infections/microbiology , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Clostridium perfringens/physiology , Coccidiosis/parasitology , Coccidiosis/veterinary , Diet/veterinary , Dietary Supplements/analysis , Eimeria/physiology , Enteritis/microbiology , Enteritis/prevention & control , Female , Male , Manganese/administration & dosage , Necrosis/microbiology , Necrosis/prevention & control , Poultry Diseases/microbiology , Trace Elements/administration & dosage , Zinc/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL