Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Clin Invest ; 133(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36512405

ABSTRACT

Disuse osteoporosis is a metabolic bone disease resulting from skeletal unloading (e.g., during extended bed rest, limb immobilization, and spaceflight), and the slow and insufficient bone recovery during reambulation remains an unresolved medical challenge. Here, we demonstrated that loading-induced increase in bone architecture/strength was suppressed in skeletons previously exposed to unloading. This reduction in bone mechanosensitivity was directly associated with attenuated osteocytic Ca2+ oscillatory dynamics. The unloading-induced compromised osteocytic Ca2+ response to reloading resulted from the HIF-1α/PDK1 axis-mediated increase in glycolysis, and a subsequent reduction in ATP synthesis. HIF-1α also transcriptionally induced substantial glutaminase 2 expression and thereby glutamine addiction in osteocytes. Inhibition of glycolysis by blockade of PDK1 or glutamine supplementation restored the mechanosensitivity in those skeletons with previous unloading by fueling the tricarboxylic acid cycle and rescuing subsequent Ca2+ oscillations in osteocytes. Thus, we provide mechanistic insight into disuse-induced deterioration of bone mechanosensitivity and a promising therapeutic approach to accelerate bone recovery after long-duration disuse.


Subject(s)
Calcium , Glutamine , Calcium/metabolism , Glutamine/pharmacology , Glutamine/metabolism , Osteocytes/metabolism , Glucose/metabolism , Energy Metabolism
2.
Am J Physiol Endocrinol Metab ; 320(5): E951-E966, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33719588

ABSTRACT

Type 2 diabetes mellitus (T2DM) results in compromised bone microstructure and quality, and subsequently increased risks of fractures. However, it still lacks safe and effective approaches resisting T2DM bone fragility. Pulsed electromagnetic fields (PEMFs) exposure has proven to be effective in accelerating fracture healing and attenuating osteopenia/osteoporosis induced by estrogen deficiency. Nevertheless, whether and how PEMFs resist T2DM-associated bone deterioration remain not fully identified. The KK-Ay mouse was used as the T2DM model. We found that PEMF stimulation with 2 h/day for 8 wk remarkably improved trabecular bone microarchitecture, decreased cortical bone porosity, and promoted trabecular and cortical bone material properties in KK-Ay mice. PEMF stimulated bone formation in KK-Ay mice, as evidenced by increased serum levels of bone formation (osteocalcin and P1NP), enhanced bone formation rate, and increased osteoblast number. PEMF significantly suppressed osteocytic apoptosis and sclerostin expression in KK-Ay mice. PEMF exerted beneficial effects on osteoblast- and osteocyte-related gene expression in the skeleton of KK-Ay mice. Nevertheless, PEMF exerted no effect on serum biomarkers of bone resorption (TRAcP5b and CTX-1), osteoclast number, or osteoclast-specific gene expression (TRAP and cathepsin K). PEMF upregulated gene expression of canonical Wnt ligands (including Wnt1, Wnt3a, and Wnt10b), but not noncanonical Wnt5a. PEMF also upregulated skeletal protein expression of downstream p-GSK-3ß and ß-catenin in KK-Ay mice. Moreover, PEMF-induced improvement in bone microstructure, mechanical strength, and bone formation in KK-Ay mice was abolished after intragastric administration with the Wnt antagonist ETC-159. Together, our results suggest that PEMF can improve bone microarchitecture and quality by enhancing the biological activities of osteoblasts and osteocytes, which are associated with the activation of the Wnt/ß-catenin signaling pathway. PEMF might become an effective countermeasure against T2DM-induced bone deterioration.NEW & NOTEWORTHY PEMF improved trabecular bone microarchitecture and suppressed cortical bone porosity in T2DM KK-Ay mice. It attenuated T2DM-induced detrimental consequence on trabecular and cortical bone material properties. PEMF resisted bone deterioration in KK-Ay mice by enhancing osteoblast-mediated bone formation. PEMF also significantly suppressed osteocytic apoptosis and sclerostin expression in KK-Ay mice. The therapeutic potential of PEMF on T2DM-induced bone deterioration was associated with the activation of Wnt/ß-catenin signaling.


Subject(s)
Bone Diseases, Metabolic/therapy , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 2/therapy , Magnetic Field Therapy , Osteoporosis/therapy , Animals , Bone Diseases, Metabolic/etiology , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/metabolism , Bone and Bones/metabolism , Bone and Bones/radiation effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Electromagnetic Fields , Glucose/metabolism , Magnetic Field Therapy/methods , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osteogenesis/physiology , Osteogenesis/radiation effects , Osteoporosis/etiology , Osteoporosis/genetics , Osteoporosis/metabolism , Wnt Signaling Pathway/radiation effects , beta Catenin/metabolism
3.
J Neurotrauma ; 38(6): 765-776, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33108939

ABSTRACT

Spinal cord injury (SCI) leads to extensive bone loss and high incidence of low-energy fractures. Pulsed electromagnetic fields (PEMF) treatment, as a non-invasive biophysical technique, has proven to be efficient in promoting osteogenesis. The potential osteoprotective effect and mechanism of PEMF on SCI-related bone deterioration, however, remain unknown. The spinal cord of rats was transected at vertebral level T12 to induce SCI. Thirty rats were assigned to the control, SCI, and SCI+PEMF groups (n = 10). One week after surgery, the SCI+PEMF rats were subjected to PEMF (2.0 mT, 15 Hz, 2 h/day) for eight weeks. Micro-computed tomography results showed that PEMF significantly ameliorated trabecular and cortical bone microarchitecture deterioration induced by SCI. Three-point bending and nanoindentation assays revealed that PEMF significantly improved bone mechanical properties in SCI rats. Serum biomarker and bone histomorphometric analyses demonstrated that PEMF enhanced bone formation, as evidenced by significant increase in serum osteocalcin and P1NP, mineral apposition rate, and osteoblast number on bone surface. The PEMF had no impact, however, on serum bone-resorbing cytokines (TRACP 5b and CTX-1) or osteoclast number on bone surface. The PEMF also attenuated SCI-induced negative changes in osteocyte morphology and osteocyte survival. Moreover, PEMF significantly increased skeletal expression of canonical Wnt ligands (Wnt1 and Wnt10b) and stimulated their downstream p-GSK3ß and ß-catenin expression in SCI rats. This study demonstrates that PEMF can mitigate the detrimental consequence of SCI on bone quantity/quality, which might be associated with canonical Wnt signaling-mediated bone formation, and reveals that PEMF may be a promising biophysical approach for resisting osteopenia/osteoporosis after SCI in clinics.


Subject(s)
Bone Density/physiology , Magnetic Field Therapy/methods , Osteogenesis/physiology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy , Wnt Signaling Pathway/physiology , Animals , Electromagnetic Fields , Male , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/diagnostic imaging , Thoracic Vertebrae/diagnostic imaging , Thoracic Vertebrae/injuries , X-Ray Microtomography/methods
4.
FASEB J ; 34(2): 3037-3050, 2020 02.
Article in English | MEDLINE | ID: mdl-31908035

ABSTRACT

Pulsed electromagnetic fields (PEMFs) and whole-body vibration (WBV) are proved to partially preserve bone mass/strength in hindlimb-unloaded and ovariectomized animals. However, the potential age-dependent skeletal response to either PEMF or WBV has not been fully investigated. Moreover, whether the coupled "mechano-electro-magnetic" signals can induce greater osteogenic potential than single stimulation remains unknown. Herein, 5-month-old or 20-month-old rats were assigned to the Control, PEMF, WBV, and PEMF + WBV groups. After 8-week treatment, single PEMF/WBV enhanced bone mass, strength, and anabolism in 5-month-old rats, but not in 20-month-old rats. PEMF + WBV induced greater increase of bone quantity, quality, and anabolism than single PEMF/WBV in young adult rats. PEMF + WBV also inhibited bone loss in elderly rats by primarily improving osteoblast and osteocyte activity, but had no effects on bone resorption. PEMF + WBV upregulated the expression of various canonical Wnt ligands and downstream molecules (p-GSK-3ß and ß-catenin), but had no impacts on noncanonical Wnt5a expression in aged skeleton, revealing the potential involvement of canonical Wnt signaling in bone anabolism of PEMF + WBV. This study not only reveals much weaker responsiveness of aged skeleton to single PEMF/WBV relative to young adult skeleton, but also presents a novel noninvasive approach based on combinatorial treatment with PEMF + WBV for improving bone health and preserving bone quantity/quality (especially for age-related osteoporosis) with stronger anabolic effects.


Subject(s)
Aging , Magnetic Field Therapy , Osteoporosis , Skeleton , Vibration , Animals , Male , Osteoporosis/metabolism , Osteoporosis/physiopathology , Osteoporosis/therapy , Rats , Rats, Sprague-Dawley , Skeleton/metabolism , Skeleton/physiopathology
5.
Bioelectromagnetics ; 38(8): 602-612, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28741320

ABSTRACT

Pulsed electromagnetic fields (PEMF) have been proven to be effective for promoting bone mass and regulating bone turnover both experimentally and clinically. However, the exact mechanisms for the regulation of PEMF on osteoclastogenesis as well as optical exposure parameters of PEMF on inhibiting osteoclastic activities and functions remain unclear, representing significant limitations for extensive scientific application of PEMF in clinics. In this study, RAW264.7 cells incubated with RANKL were exposed to 15 Hz PEMF (2 h/day) at various intensities (0.5, 1, 2, and 3 mT) for 7 days. We demonstrate that bone resorbing capacity was significantly decreased by 0.5 mT PEMF mainly by inhibiting osteoclast formation and maturation, but enhanced at 3 mT by promoting osteoclast apoptosis. Moreover, gene expression of RANK, NFATc1, TRAP, CTSK, BAX, and BAX/BCL-2 was significantly decreased by 0.5 mT PEMF, but increased by 3 mT. Our findings reveal a significant intensity window for low-intensity PEMF in regulating bone resorption with diverse nature for modulating osteoclastogenesis and apoptosis. This study not only enriches our basic knowledge for the regulation of PEMF in osteoclastogenesis, but also may lead to more efficient and scientific clinical application of PEMF in regulating bone turnover and inhibiting osteopenia/osteoporosis. Bioelectromagnetics. 38:602-612, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Apoptosis/radiation effects , Bone Resorption/pathology , Electromagnetic Fields , Osteoclasts/cytology , Osteoclasts/radiation effects , RANK Ligand/pharmacology , Animals , Cytoskeleton/metabolism , Cytoskeleton/radiation effects , Dose-Response Relationship, Radiation , Gene Expression Regulation/radiation effects , Mice , Osteogenesis/radiation effects , RAW 264.7 Cells
6.
Sci Rep ; 7(1): 553, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28373666

ABSTRACT

Electromagnetic fields (EMF) was considered as a non-invasive modality for treatment of osteoporosis while the effects were diverse with EMF parameters in time domain. In present study, we extended analysis of EMF characteristics from time domain to frequency domain, aiming to investigate effects of four kinds of EMF (LP (1-100 Hz), BP (100-3,000 Hz), HP (3,000-50,000 Hz) and AP (1-50,000 Hz)) on ovariectomized (OVX) osteoporosis (OP) in mice. Forty-eight 3-month-old female BALB/c mice were equally assigned to Sham, OVX, OVX + LP, OVX + BP, OVX + HP and OVX + AP groups (n = 8). After 8-week exposure (3 h/day), LP and BP significantly increased serum bone formation markers and osteogenesis-related gene expressions compared with OVX. Bedsides, LP and BP also slightly increased bone resorption activity compared with OVX, evidenced by increased RANKL/OPG ratio. HP sharply decreased serum bone formation and resporption markers and osteogenesis and osteoclastogenesis related gene expressions compared with OVX. AP had accumulative effects of LP, BP and HP, which significantly increased bone formation and decreased bone resporption activity compared with OVX. As a result, LP, BP and HP exposure did not later deterioration of bone mass, microarchitecture and mechanical strength in OVX mice with OP. However, AP stimulation attenuated OVX-induced bone loss.


Subject(s)
Electromagnetic Fields , Osteoporosis/diagnosis , Osteoporosis/etiology , Ovariectomy , Animals , Biomarkers , Body Weight , Bone Density , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Bone and Bones/pathology , Bone and Bones/radiation effects , Disease Models, Animal , Female , Humans , Magnetic Field Therapy/methods , Mice , Osteoporosis/metabolism , Osteoporosis/therapy , Osteoporosis, Postmenopausal/blood , Osteoporosis, Postmenopausal/diagnosis , Osteoporosis, Postmenopausal/metabolism , Osteoporosis, Postmenopausal/therapy , Ovariectomy/adverse effects , X-Ray Microtomography
7.
Bioelectromagnetics ; 38(1): 63-77, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27859405

ABSTRACT

Periodontal ligament stem cells (PDLSCs) have been confirmed to have self-renewal capacity and multidifferentiation potential and are good candidates for periodontal tissue regeneration. Pulsed electromagnetic field (PEMF) has been demonstrated to promote osteogenesis in non-union fractures, partly by regulating mesenchymal stem cells or osteoblast activity. However, there is no report about the osteo-inductive effect of PEMF stimulation on human PDLSCs (hPDLSCs). Thus, we tested the hypothesis that PEMF biophysical stimulation alone has an influence on the proliferation and osteogenic differentiation of hPDLSCs. To detect the osteo-inductive potential of bone morphogenetic protein (BMP9), we transfected the STRO-1+ /CD146+ hPDLCSs with BMP9-expressing recombinant adenoviruses. We examined the proliferation and osteogenic differentiation of hPDLSCs treated with either PEMF (15 Hz, 1 h daily, different intensities), or BMP9, or both stimuli. Cell counting kit-8 (CCK-8) assay showed that PEMF of different intensities had no effect on the proliferation of hPDLSCs and did not enhance the proliferative capability of BMP9-transfected cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting showed that the combination of both PEMFs (1.8 or 2.4 mT) and BMP9 stimulation had a synergistic effect on early and intermediate osteogenic genes and protein expressions of runt-related transcription factor 2, alkaline phosphatase, osteopontin, and late mineralized extracellular matrix formation in hPDLSCs. Bioelectromagnetics. 38:63-77, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Electromagnetic Fields , Growth Differentiation Factor 2/pharmacology , Osteogenesis/drug effects , Periodontal Ligament/cytology , Stem Cells/drug effects , Stem Cells/radiation effects , Adolescent , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Child , Extracellular Matrix/metabolism , Humans , Minerals/metabolism , Stem Cells/cytology , Up-Regulation/drug effects
8.
Bioelectromagnetics ; 37(3): 152-162, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26891468

ABSTRACT

Substantial evidence indicates that pulsed electromagnetic fields (PEMF) could accelerate fracture healing and enhance bone mass, whereas the unclear mechanism by which PEMF stimulation promotes osteogenesis limits its extensive clinical application. In the present study, effects and potential molecular signaling mechanisms of PEMF on in vitro osteoblasts were systematically investigated. Osteoblast-like MC3T3-E1 cells were exposed to PEMF burst (0.5, 1, 2, or 6 h/day) with 15.38 Hz at various intensities (5 Gs (0.5 mT), 10 Gs (1 mT), or 20 Gs (2 mT)) for 3 consecutive days. PEMF stimulation at 20 Gs (2 mT) for 2 h/day exhibited most prominent promotive effects on osteoblastic proliferation via Cell Counting kit-8 analyses. PEMF exposure induced well-organized cytoskeleton, and promoted formation of extracellular matrix mineralization nodules. Significantly increased proliferation-related gene expressions at the proliferation phase were observed after PEMF stimulation, including Ccnd 1 and Ccne 1. PEMF resulted in significantly increased gene and protein expressions of alkaline phosphatase and osteocalcin at the differentiation phase of osteoblasts rather than the proliferation phase via quantitative reverse transcription polymerase chain reaction and Western blotting analyses. Moreover, PEMF upregulated gene and protein expressions of collagen type 1, Runt-related transcription factor 2 and Wnt/ß-catenin signaling (Wnt1, Lrp6, and ß-catenin) at proliferation and differentiation phases. Together, our present findings highlight that PEMF stimulated osteoblastic functions through a Wnt/ß-catenin signaling-associated mechanism and, hence, regulates downstream osteogenesis-associated gene/protein expressions. Bioelectromagnetics. 37:152-162, 2016. © 2016 Wiley Periodicals, Inc.

9.
Biomed Eng Online ; 15: 8, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26786255

ABSTRACT

BACKGROUND: Extremely low frequency pulsed magnetic fields (ELFPMF) have been shown to induce Faraday currents and measurable effects on biological systems. A kind of very high frequency electromagnetic field was reported that it improved the symptoms of diabetic nephropathy (DN) which is a major complication of diabetes. However, few studies have examined the effects of ELFPMF DN at the present. The present study was designed to investigate the effects of ELFPMF on DN in streptozotocin (STZ)-induced type 1 diabetic rats. METHODS: Adult male SD rats were randomly divided into three weight-matched groups: Control (non-diabetic rats without DN), DN + ELFPMF (diabetic rats with DN exposed to ELFPMF, 8 h/days, 6 weeks) and DN (diabetic rats with DN exposed to sham ELFPMF). Renal morphology was examined by light and electron microscopy, vascular endothelial growth factor (VEGF)-A and connective tissue growth factor (CTGF) were measured by enzyme linked immune sorbent assay. RESULTS: After 6 weeks' ELFPMF exposure, alterations of hyperglycemia and weight loss in STZ-treated rats with DN were not found, while both positive and negative effects of ELFPMF on the development of DN in diabetic rats were observed. The positive one was that ELFPMF exposure attenuated the pathological alterations in renal structure observed in STZ-treated rats with DN, which were demonstrated by slighter glomerular and tubule-interstitial lesions examined by light microscopy and slighter damage to glomerular basement membrane and podocyte foot processes examined by electron microscopy. And then, the negative one was that ELFPMF stimulation statistically significantly decreased renal expression of VEGF-A and statistically significantly increased renal expression of CTGF in diabetic rats with DN, which might partially aggravate the symptoms of DN. CONCLUSION: Both positive and negative effects of ELFPMF on the development of DN in diabetic rats were observed. The positive effect induced by ELFPMF might play a dominant role in the procession of DN in diabetic rats, and it is suggested that the positive effect should be derived from the correction of pathogenic diabetes-induced mediators.


Subject(s)
Diabetic Nephropathies/therapy , Magnetic Field Therapy , Streptozocin/adverse effects , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Connective Tissue Growth Factor/metabolism , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Gene Expression Regulation/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Male , Rats , Rats, Sprague-Dawley , Time Factors , Vascular Endothelial Growth Factor A/metabolism
10.
Acta Biomater ; 10(2): 975-85, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24140610

ABSTRACT

The use of pulsed electromagnetic fields (PEMFs) is a promising approach to promote osteogenesis. However, few studies have reported the effects of this technique on the osseointegration of endosseous implants, especially with regard to different implant topographies. We focused on how the initial interaction between cells and the titanium surface is enhanced by a PEMF and the possible regulatory mechanisms in this study. Rat osteoblasts were cultured on three types of titanium surfaces (Flat, Micro and Nano) under PEMF stimulation or control conditions. Protein adsorption was significantly increased by the PEMF. The number of osteoblasts attached to the surfaces in the PEMF group was substantially greater than that in the control group after 1.5h incubation. PEMF stimulation oriented the osteoblasts perpendicular to the electromagnetic field lines and increased the number of microfilaments and pseudopodia formed by the osteoblasts. The cell proliferation on the implant surfaces was significantly promoted by the PEMF. Significantly increased extracellular matrix mineralization nodules were observed under PEMF stimulation. The expression of osteogenesis-related genes, including BMP-2, OCN, Col-1,ALP, Runx2 and OSX, were up-regulated on all the surfaces by PEMF stimulation. Our findings suggest that PEMFs enhance the osteoblast compatibility on titanium surfaces but to different extents with regard to implant surface topographies. The use of PEMFs might be a potential adjuvant treatment for improving the osseointegration process.


Subject(s)
Electromagnetic Fields , Osteoblasts/cytology , Prostheses and Implants , Adsorption , Alkaline Phosphatase/metabolism , Animals , Bone Morphogenetic Protein 2/metabolism , Cell Adhesion , Cell Proliferation , Cell Shape/genetics , Extracellular Matrix/metabolism , Gene Expression Regulation , Microscopy, Electron, Scanning , Osteoblasts/enzymology , Osteoblasts/metabolism , Osteoblasts/ultrastructure , Osteogenesis/genetics , Rats , Rats, Sprague-Dawley , Surface Properties
11.
Bioelectromagnetics ; 31(8): 640-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20607739

ABSTRACT

Diabetic wound (DW) problems are becoming a formidable clinical challenge due to the sharp increase in the diabetic population and the high incidence of DW. Static magnetic field (SMF) therapy, an inexpensive and accessible noninvasive method, has been proven to be effective on various tissue repairs. However, the issue of the therapeutic effect of SMF on DW healing has never been investigated. The objective of this study was to systematically evaluate the effect of a 180 mT moderate-intensity gradient SMF on DW healing in streptozotocin-induced diabetic rats. Forty-eight 3-month-old male Sprague-Dawley rats (32 diabetic and 16 non-diabetic rats) were assigned to three equal groups: normal wound, DW, and DW + SMF groups. An open circular wound with 1.5 cm diameter was created in the dorsum. The wound was covered with a dressing and the magnet was fixed on top of the dressing. On days 5, 12, and 19, four rats of each group were euthanized and gross wound area, histology and tensile strength were evaluated. The wound area determination suggested that SMF significantly increased the healing rate and reduced the gross healing time. This result was further confirmed by histological observations. The wound tensile strength, reflecting the amount and quality of collagen deposition, increased to a larger extent in the DW + SMF group on days 12 and 19 compared with the DW group. The results indicated that 180 mT SMF presented a beneficial effect on DW healing, and implied the clinical potential of SMF therapy in accelerating DW repair and releasing the psychological and physical burdens of diabetic patients.


Subject(s)
Diabetes Complications/therapy , Magnetic Field Therapy , Magnetics , Wound Healing , Animals , Blood Glucose/metabolism , Diabetes Complications/blood , Diabetes Complications/pathology , Male , Rats , Rats, Sprague-Dawley , Tensile Strength , Time Factors
12.
Bone ; 46(2): 487-95, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19782781

ABSTRACT

Pulsed electromagnetic fields (PEMF) have been proved effective in the prevention of osteoporosis both experimentally and clinically. Chronotherapy studies have shown that circadian rhythm (CR) played an important role in the occurrence, development and treatment of several diseases. CR has also been recognized as an essential feature of bone metabolism. Therefore, it is of therapeutic significance to investigate the impact of CR on the efficacy of PEMF in the prevention of osteoporosis. However, this issue has never been discussed previously. The objective of this study was to systematically evaluate the impact of CR on the preventive effect of PEMF on osteoporosis in rats. Thirty-two 3 month old female Sprague-Dawley rats were randomly divided into four different groups: sham-operated control (Sham), ovariectomy (OVX), OVX with PEMF stimulation in daytime (OVX+DPEMF) and OVX with PEMF stimulation in nighttime (OVX+NPEMF) groups. The OVX+DPEMF and OVX+NPEMF groups were subjected to daily PEMF exposure on the 2nd post-operative day, from 9:00 to 15:00, and 0:00 to 6:00, respectively. After 12 weeks, the OVX+DPEMF group presented better efficacy in prevention against OVX-induced bone loss and deterioration of trabecular bone architecture compared with the OVX+NPEMF group. This was evidenced by the increased levels of femoral bone mineral density, trabecular area percentage, trabecular thickness, trabecular number and decreased trabecular separation. Furthermore, the bone turnover biomarkers (serum alkaline phosphatase, serum bone Gla protein and urinary deoxypyridinoline) and the dynamic histomorphometric parameters reflecting the trabecular osteoblast and osteoclast activity (bone formation rate with bone volume as referent, osteoclast number, etc.) in the OVX+DPEMF group decreased to a larger extent compared with the OVX+NPEMF group. In conclusion, the results indicated that CR was an important factor determining the preventive effect of PEMF on osteoporosis and PEMF exposure in the daytime presented better stimulus efficacy in rats. The findings might be helpful for the efficacious use of PEMF mediations, evaluation of PEMF action and experimental design in the future studies of biological effect of electromagnetic fields.


Subject(s)
Circadian Rhythm/physiology , Electromagnetic Fields , Osteoporosis/prevention & control , Osteoporosis/physiopathology , Ovariectomy , Animals , Biomarkers/blood , Biomarkers/urine , Body Weight , Bone Density/physiology , Female , Femur/pathology , Femur/physiopathology , Osteoporosis/blood , Osteoporosis/urine , Rats , Rats, Sprague-Dawley , Uterus/pathology
13.
Bioelectromagnetics ; 28(8): 608-14, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17620298

ABSTRACT

An experimental study was carried out in rabbits to investigate the effects of exposing rabbits to low-intensity pulsed magnetic fields (PMFs) on alimentary hyperlipemia. Thirty female white big ear rabbits were randomly divided into three groups. The normal group was fed with a standard chow diet and the other two groups (hyperlipid and magnetic) were fed with the chow diet supplemented with cholesterol, yolk powder and lard. The magnetic group was exposed to 15 Hz pulsed magnetic fields. After 8 weeks, levels of blood lipid and indices of hemorheology were examined. In addition, histomorphologic changes of hepatic and myocardial tissues were compared across the groups respectively. Compared with the hyperlipid group, hemorheology indices of the magnetic group reduced significantly from 12.80% to 38.05% (P < 0.01) indicating lower blood viscosity. Similarly, compared with the hyperlipid group, the levels of total cholesterol and triglycerides in the magnetic group decreased 40.52% and 52.42% (P < 0.01). On the contrary, high density lipoprotein (HDL) value obviously increased 66.67% (P < 0.01). Furthermore, compared with the control group, the values of triglycerides and HDL of the magnetic group did not show statistical differences (P > 0.05). The deposit of fatty material on the inner lining of thoracic aorta wall of the magnetic group was significantly lighter than that of the hyperlipid group. Numerous aggregation of lipoids emerged among myocardial myofibrils in the hyperlipid group, while no notable change was found in both the magnetic and control group. The results indicate that low-intensity PMFs could be helpful for the treatment of alimentary hyperlipemia.


Subject(s)
Digestive System/radiation effects , Electric Stimulation/methods , Electromagnetic Fields , Hyperlipidemias/physiopathology , Hyperlipidemias/therapy , Magnetics/therapeutic use , Animals , Dose-Response Relationship, Radiation , Female , Rabbits , Radiation Dosage , Treatment Outcome
14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 20(3): 460-2, 2003 Sep.
Article in Chinese | MEDLINE | ID: mdl-14565013

ABSTRACT

This article describes the development of an innovative microcomputerized pulse-water-sac massage with drug penetration instrument and reports its effectiveness in the patients with immunity infertility accompanied by chronic seminal vesiculitis. The instrument was developed on the basis of the pathological characteristics of immunity infertility accompanied by chronic seminal vesiculitis, and along the lines of our practice in integrating the modern theory of traditional Chinese medicine, with multiple techniques of biomedical engineering sciences. 181 male patients with immunity infertility accompanied by chronic seminal vesiculitis received the treatment. Of these cases, 135(74.6%) were cured, 37(20.4%) were treated with significant therapeutic effects and 9(5.0%) with improved effects. The results of antisperm antibody (AsAb) tests became negative in 85.6% of the patients after treatment, and the pregnancy rate of their wives was 49.1%. No mild adverse effects were observed in all cases.


Subject(s)
Drug Therapy, Computer-Assisted/instrumentation , Genital Diseases, Male/therapy , Infertility, Male/therapy , Massage/instrumentation , Seminal Vesicles/microbiology , Anti-Bacterial Agents/administration & dosage , Chronic Disease , Combined Modality Therapy , Drugs, Chinese Herbal/administration & dosage , Equipment Design , Genital Diseases, Male/complications , Humans , Infertility, Male/complications , Infertility, Male/immunology , Male , Seminal Vesicles/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL