Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int Immunopharmacol ; 98: 107915, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34198236

ABSTRACT

Non-alcoholic steatohepatitis (NASH), an extreme progressive subtype of metabolic associated fatty liver disease, is well characterized by hepatic steatosis, injury and inflammation. It causes irreversible hepatic damage and there are no approved interventions for it. ß-PAE, a representatively pharmacological active substance isolated from Pogostemon cablin, has been indicated to alleviate hepatic steatosis and injury through modulating lipid metabolism in rats with simple steatosis. However, its protection against NASH remains unclear. Here, this study explored the potential effect of ß-PAE against high-fat diet-induced NASH in rats. The results displayed that ß-PAE significantly reduced the gains of body weight and epididymal adipose tissue, liver index and attenuated liver histological damages in NASH rats. It also markedly alleviated hepatic inflammation by inhibiting NLRP3 inflammasome activation. In NASH, the active NLRP3 inflammasome is caused by hepatic lipid abnormal accumulation-induced oxidative stress. Excessive oxidative stress results in hepatic histanoxia, which exacerbates lipid metabolism disorders by elevating CD36 to suppress AMPK signalling pathways. Moreover, the lipid accumulation led by lipid metabolism dysfunction intensifies oxidative stress. A vicious circle is formed among oxidative stress, histanoxia and lipid accumulation, eventually, but ß-PAE effectively interrupted it. Interestingly, soluble CD36 (sCD36) was tightly associated not only with hepatic steatosis and injury but also with inflammation. Collectively, ß-PAE exerted a positive effect against NASH by interrupting the vicious circle among oxidative stress, histanoxia and lipid accumulation, and sCD36 may be a promising non-invasive tool for NASH diagnosis.


Subject(s)
Liver/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Sesquiterpenes, Guaiane/pharmacology , Animals , Cell Hypoxia/drug effects , Cell Hypoxia/immunology , Diet, High-Fat/adverse effects , Disease Models, Animal , Drug Evaluation, Preclinical , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Inflammasomes/antagonists & inhibitors , Inflammasomes/metabolism , Lipid Metabolism/drug effects , Lipid Metabolism/immunology , Liver/immunology , Liver/metabolism , Liver/pathology , Male , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress/drug effects , Oxidative Stress/immunology , Rats , Sesquiterpenes, Guaiane/therapeutic use
2.
J Ethnopharmacol ; 271: 113886, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33524513

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqin Decoction (HQD), a traditional Chinese medicinal (TCM) formula chronicled in Shang Han Lun, has been used to treat gastrointestinal diseases for nearly 1800 years. OBJECTIVE: To investigate the effects and underlying mechanisms of HQD on ulcerative colitis (UC). METHODS: The bioactive compounds in HQD were obtained from the traditional Chinese medicine systems pharmacology database. Then, the HQD and UC-related targets were analyzed by establishing HQD-Compounds-Targets (H-C-T) and protein-protein interaction (PPI) networks. Enrichment analysis was used for further study. The candidate targets for the effects of HQD on UC were validated using a dextran sulfate sodium-induced UC mouse experiment. RESULTS: The results showed that 51 key targets were gained by matching 284 HQD-related targets and 837 UC-related targets. Combined with H-C-T and PPI network analyses, the key targets were divided into endothelial growth, inflammation and signal transcription-related targets. Further experimental validation showed that HQD targeted estrogen receptor alpha (ESR1) and endothelial growth factor receptors to relieve endothelial dysfunction, thereby improving intestinal barrier function. The expression of inflammatory cytokines and signal transducers was suppressed by HQD treatment and inflammation was inhibited. CONCLUSIONS: HQD may acts on UC via the regulation of targets and pathways related to improving the intestinal mucosal barrier and ameliorating endothelial dysfunction. Additionally, ERS1 may be a new target to explore the mechanisms of UC.


Subject(s)
Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal/pharmacology , Endothelium/metabolism , Estrogen Receptor alpha/metabolism , Scutellaria baicalensis/chemistry , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Cyclooxygenase 2/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Endothelium/drug effects , ErbB Receptors/metabolism , Male , Mice, Inbred BALB C , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Protein Interaction Maps , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
3.
Biochem Pharmacol ; 182: 114260, 2020 12.
Article in English | MEDLINE | ID: mdl-33017576

ABSTRACT

Ulcerative colitis (UC) often occurs accompanied by colonic leakage and flora imbalance, resulting in secondary liver injury (SLI). SLI, in turn, aggravates UC, so the treatment of UC should not ignore it. ß-patchoulene (ß-PAE), a tricyclic sesquiterpene isolated from Pogostemon cablin, has been reported to exert a protective effect in gastrointestinal disease in our previous studies. However, its protection against UC and SLI remains unknown. Here we explored the protective effect and underlying mechanism of ß-PAE against dextran sulfate sodium-induced UC and SLI in mice. The results indicated that ß-PAE significantly reduced disease activity index, splenic index and attenuated the shortening of colonic length in UC mice. It alleviated colonic pathological changes and apoptosis through protecting tight junctions, reducing neutrophil aggregation, and inhibiting the release of pro-inflammatory cytokines and adhesion molecules. These effects of ß-PAE were associated with the inhibition of TLR4/MyD88/NF-κB and ROCK1/MLC2 signalling pathway. UC-induced colonic leakage caused abnormally high LPS levels to result in SLI, and ß-PAE markedly inhibited it. ß-PAE simultaneously ameliorated SLI with reduced biomarker levels of endotoxin exposure and hepatic inflammation. High levels of LPS were also associated with flora imbalance in UC mice. However, ß-PAE restored the diversity of gut microbiota and altered the relative abundance of characteristic flora of UC mice. Escherichia-dominated gut microbiota of UC mice was changed to Oscillospira-dominated after ß-PAE treatment. In conclusion, pharmacological effects of ß-PAE on UC and SLI were mainly contributed by suppressing colonic leakage and flora imbalance. The findings may have implications for UC treatment that not neglect the treatment of SLI.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Colitis/chemically induced , Colitis/drug therapy , Dextran Sulfate/toxicity , Gastrointestinal Microbiome/drug effects , Sesquiterpenes, Guaiane/therapeutic use , Animals , Chemical and Drug Induced Liver Injury/metabolism , Colitis/metabolism , Colon/drug effects , Colon/metabolism , Gastrointestinal Microbiome/physiology , Male , Mice , Mice, Inbred BALB C , Random Allocation , Sesquiterpenes, Guaiane/pharmacology
4.
Biomed Pharmacother ; 124: 109883, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32004938

ABSTRACT

Intestinal mucositis causes great suffering to cancer patients who undergo chemotherapy and radiotherapy. Owing to the uncertain side effects of anticancer drugs to attenuate patients' intestinal mucositis, many studies focused on traditional Chinese medicine (TCM). Patchouli alcohol (PA) is an active compound extracted from Pogostemon cablin, and has potent gastrointestinal protective effect. However, whether PA has an effect on intestinal mucositis is still unknown. Therefore, we established a rat model of intestinal mucositis via intraperitoneal injection of 5-fluorouracil, and intragastrically administrated PA (10, 20, and 40 mg/kg) to evaluate the effect of PA on intestinal mucositis. The routine observation (body weight, food intake, and diarrhea) in rats was used to detect whether PA had an effect on intestinal mucositis. Levels of inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-10, and MPO), mucosal barrier proteins (zonula occludens -1 (ZO-1), claudin-1, occludin, myosin light chain (MLC), and mucin-2) and intestinal microbiota were determined to elucidate the underlying mechanism of PA action on intestinal mucositis in rats. The results showed that PA could effectively improve body weight, food intake, and diarrhea in intestinal mucositis rats, preliminary confirming PA efficacy. Further experiments revealed that PA not only decreased the levels of TNF-α, IL-1ß, IL-6, and MPO but also increased the level of IL-10 significantly. In addition, the expression of mucosal barrier proteins and microbiota community were also improved after PA treatment in diseased rats. Hence, PA may prevent the development and progression of intestinal mucositis by improving inflammation, protecting mucosal barrier, and regulating intestinal microbiota.


Subject(s)
Fluorouracil/toxicity , Intestinal Mucosa/drug effects , Mucositis/prevention & control , Sesquiterpenes/pharmacology , Animals , Antimetabolites, Antineoplastic/toxicity , Dose-Response Relationship, Drug , Gastrointestinal Microbiome/drug effects , Inflammation/chemically induced , Inflammation/prevention & control , Intestinal Mucosa/pathology , Male , Mucositis/chemically induced , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Toll-Like Receptor 2/metabolism
5.
Planta Med ; 86(4): 255-266, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31975362

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. Nevertheless, no first-line therapy exists. Hepatic steatosis is the earliest stage of NAFLD, which is characterized by an accumulation of hepatic lipids. Patchouli oil (PO), which is isolated from the well-known Chinese herb named Pogostemon cablin (Blanco) Benth. (Lamiaceae), inhibits hepatic lipid accumulation effectively. However, its potential ability for the treatment of NAFLD had not been reported before. Thus, the objective of this study was to investigate the effectiveness of PO against hepatic steatosis and its underlying mechanisms. We used a high fat diet (HFD)-induced hepatic steatosis model of rats to estimate the effect of PO against NAFLD. Hematoxylin-eosin and oil red O staining were used to analyze the hepatic histopathological changes. ELISA, RT-qPCR, and Western blotting analysis were applied to evaluate the parameters for hepatic steatosis. Our results showed that PO significantly attenuated the lipid profiles and the serum enzymes, evidenced by quantitative and histopathological analyses. It also markedly down-regulated the expression of sterol regulatory element-binding protein 1 (SREPB-1c) with its downstream factors in de novo lipogenesis. And, likewise, in lipid export by very low-density lipoproteins (VLDL), related molecules were dramatically improved. Furthermore, PO observably normalized the aberrant peroxisome proliferator-activated receptor α (PPAR-α) signal in fatty acids oxidation. In conclusion, PO exerted a preventing effect against HFD-induced steatosis and might be due to decrease de novo lipogenesis, promote export of lipids, as well as owing to improve fatty acids oxidation.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat , Lipogenesis , Liver , Pogostemon , Rats
6.
J Ethnopharmacol ; 250: 112519, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-31883475

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pogostemon cablin, commonly named "Guang-Huo-Xiang" in China, has long been renowned for its ability to dispel dampness and regulate gastrointestinal functions. Patchouli oil (P.oil), the major active fraction of Pogostemon cablin, has been traditionally used as the principal component of Chinese medicinal formulae to treat exterior syndrome and diarrhea. However, the effects of P.oil in treating 5-fluorouracil (5-FU)-induced intestinal mucositis have not yet been reported. AIM OF THE STUDY: To investigate the protective effects of P.oil against 5-FU-induced intestinal mucositis and the mechanisms underlying these effects. MATERIALS AND METHODS: Sprague-Dawley rats were intraperitoneally injected with 5-FU (30 mg/kg) to establish an intestinal mucositis model. Meanwhile, rats with intestinal mucositis were orally administered with P.oil (25, 50, and 100 mg/kg). Histological analysis, ELISA (for detecting inflammatory cytokines and aquaporins), immunohistochemistry analysis (for examining caspases), qRT-PCR analysis (for assessment tight junctions), and western blotting analysis (for the assessment of TLR2/TLR4-MyD88 and VIP-cAMP-PKA signaling pathway-related proteins) were performed to estimate the protective effects of P.oil against intestinal mucositis and the mechanisms underlying these effects. RESULTS: The histopathological assessment preliminarily exhibited that P.oil alleviated the 5-FU-induced damage to the intestinal structure. After P.oil administration, the elevation of the expression of cytokines (TNF-α, IFN-γ, and IL-13) decreased markedly and the activation of NF-κB and MAPK signaling was significantly inhibited. P.oil also increased the mRNA expression of ZO-1 and Occludin, thereby stabilizing intestinal barrier. In addition, P.oil decreased the expressions of caspase-8, caspase-3, and Bax, and increased the expression of Bcl-2, thereby reducing the apoptosis of the intestinal mucosa. These results were closely related to the regulation of the TLR2/TLR4-MyD88 signaling pathway. It has been indicated that P.oil possibly protected the intestinal barrier by reducing inflammation and apoptosis. Furthermore, this study showed that P.oil inhibited the abnormal expression of AQP3, AQP7, and AQP11 by regulating the VIP-cAMP-PKA signaling pathway. Furthermore, it restored the intestinal water absorption, thereby alleviating diarrhea. CONCLUSIONS: P.oil ameliorated 5-FU-induced intestinal mucositis in rats via protecting intestinal barrier and regulating water transport.


Subject(s)
Fluorouracil/toxicity , Mucositis/prevention & control , Oils, Volatile/pharmacology , Pogostemon/chemistry , Animals , Antimetabolites, Antineoplastic/toxicity , Apoptosis/drug effects , Cytokines/metabolism , Diarrhea/chemically induced , Diarrhea/prevention & control , Dose-Response Relationship, Drug , Inflammation/drug therapy , Inflammation/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Male , Mucositis/chemically induced , Oils, Volatile/administration & dosage , Oils, Volatile/isolation & purification , Rats , Rats, Sprague-Dawley , Water/metabolism
7.
Article in English | MEDLINE | ID: mdl-31380297

ABSTRACT

The consumption of probiotics and fermented foods has been very popular in recent decades. The primary aim of our study was to evaluate the effect of probiotics on the gut microbiota and the changes in inflammatory cytokines after an average of 6.7 weeks of probiotic administration among normal pregnant women. Thirty-two healthy pregnant women at 32 weeks of gestation were recruited and divided into two groups. The probiotic group ingested combined probiotics until after birth. The base characteristics of the probiotics and control groups showed no significant differences. The structure of the fecal microbiota at the genus level varied during the third trimester, and administration of probiotics had no influence on the composition of the fecal microbiota however, many highly abundant taxa and core microbiota at the genus level changed in the probiotic group when compared to the control group. The analysis of cytokines showed that IL-5, IL-6, TNF-α, and GM-CSF had equal levels between the baseline and control groups but were significantly increased after probiotic administration (baseline = control < probiotics). Additionally, levels of IL-1ß, IL-2, IL-12, and IFN-γ significantly increased among the three groups (baseline < control < probiotics). This result demonstrated that probiotics helped to shift the anti-inflammatory state to a pro-inflammatory state. The correlation analysis outcome suggested that the relationship between the microbiota and the cytokines was not strain-dependent. The gut microbiota varied during the third trimester. The probiotics demonstrated immunomodulation effects that helped to switch over to a pro-inflammatory immune state in the third trimester, which was important for labor.


Subject(s)
Bifidobacterium longum/immunology , Dietary Supplements , Gastrointestinal Microbiome/immunology , Lactobacillus delbrueckii/immunology , Probiotics/administration & dosage , Streptococcus thermophilus/immunology , Adult , Bifidobacterium longum/genetics , Case-Control Studies , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Gene Expression , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Immunity, Innate , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Interleukin-5/genetics , Interleukin-5/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Lactobacillus delbrueckii/genetics , Machine Learning , Pregnancy , Pregnancy Trimester, Third , Streptococcus thermophilus/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
8.
J Ethnopharmacol ; 232: 11-20, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30529424

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, supplementing Qi and strengthening body resistance are an important principle of anticancer treatment. Panax ginseng C.A.Mey. (ginseng) and Astragalus membranaceus Bunge (astragalus) are the representative herbs for this therapeutic principle. AIM OF THE STUDY: This study aims to explore the effect of the water extract of ginseng and astragalus (WEGA) on regulating macrophage polarization and mediating anticancer in the tumor microenvironment. MATERIALS AND METHODS: A549 cells were cultured in tumor-associated macrophage (TAM) supernatant with various concentrations of WEGA (0, 5, 10, 20 mg/mL). A549 cell proliferation was determined through methyl thiazole tetrazolium (MTT) assay and real-time cell analysis (RTCA), respectively. In vivo experiments were performed with a Lewis lung cancer (LLC) xenograft mouse model. Forty-eight mice were divided into six groups and treated with saline, WEGA, or cis-diamine dichloro platinum (DDP) with dosage of WEGA (0, 30, 60, 120 mg/kg body weight/day). The different groups were administered with drugs via oral or intraperitoneal injection once a day for 21 consecutive days. Tumor inhibition rate, spleen index, thymus index, cytokine, protein, and mRNA expression levels were detected in mice. RESULTS: In a co-culture system, WEGA remarkably inhibited A549 cell proliferation, promoted the expression of M1 macrophage markers and inhibited M2 TAMs markers. Therefore, WEGA affected the biological behavior of cancer cells by regulating the expression of some markers relevant to macrophage polarization. In addition, the group of WEGA and DDP chemotherapy effectively inhibited the transplanted tumor growth in mice and improved weight loss and immunosuppressive with the cisplatin inducing. CONCLUSIONS: This study provides mechanistic insights into the anticancer effect of WEGA through the regulation of macrophage polarization and highlights that WEGA could be a novel option for integrative cancer therapies.


Subject(s)
Antineoplastic Agents , Astragalus Plant , Carcinoma, Lewis Lung , Lung Neoplasms , Macrophages/drug effects , Panax , Plant Extracts , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/pathology , Cell Line, Tumor , Cell Polarity/drug effects , Cisplatin/therapeutic use , Cytokines/immunology , Drug Synergism , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Macrophages/physiology , Mice, Inbred C57BL , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Solvents/chemistry , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology , Water/chemistry
9.
Bioresour Technol ; 262: 9-14, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29689440

ABSTRACT

Low concentrations of acetic acid were used as carbon source to cultivate Cryptococcus curvatus MUCL 29819 for lipid production under high content of ammonia. Phosphorus limitation combined with initial pH regulation (pH = 6) weakened inhibition of free ammonia and promoted lipid accumulation. In batch cultivation, the produced lipid content and yield was 30.3% and 0.92 g/L, higher than those under unlimited condition (18.3% and 0.64 g/L). The content of monounsaturated fatty acid also increased from 37.3% (unlimited condition) to 45.8% (phosphorus-limited condition). During sequencing batch cultivation (SBC), the lipid content reached up to 51.02% under phosphorus-limited condition while only 31.88% under unlimited condition, which can be explained by the higher conversion efficiency of the carbon source to lipid. The total energy consumption including lipid extraction, transesterification and purification was 7.47 and 8.33 GJ under phosphorus-limited and unlimited condition, respectively.


Subject(s)
Cryptococcus , Lipids/analysis , Phosphorus , Ammonia , Batch Cell Culture Techniques , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL