Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Ethnopharmacol ; 314: 116566, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37169317

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Chinese herbal prescription Yi-Fei San-Jie pill (YFSJ) has been used for adjuvant treatment in patients with lung cancer for a long time. AIM OF THE STUDY: Reports have indicated that the combination of gefitinib (Gef) with YFSJ inhibits the proliferation of EGFR-TKI-resistant cell lines by enhancing cellular apoptosis and autophagy in non-small cell lung cancer (NSCLC). However, the molecular mechanisms underlying the effect of YFSJ on EGFR-TKI resistance and related metabolic pathways remain to be explored. MATERIALS AND METHODS: In our report, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), metabolomics, network pharmacology, bioinformatics, and biological analysis methods were used to investigate the mechanism. RESULTS: The UPLC-MS/MS data identified 42 active compounds of YFSJ extracts. YFSJ extracts can enhance the antitumor efficacy of Gef without hepatic and renal toxicity in vivo. The analysis of the metabolomics pathway enrichment revealed that YFSJ mainly affected the tyrosine metabolism pathway in rat models. Moreover, YFSJ has been shown to reverse Gef resistance and improve the effects of Gef on the cellular viability, migration capacity, and cell cycle arrest of NSCLC cell lines with EGFR mutations. The results of network pharmacology and molecular docking analyses revealed that tyrosine metabolism-related active compounds of YFSJ affect EGFR-TKIs resistance in NSCLC by targeting cell cycle and the MET/EGFR signaling pathway; these findings were validated by western blotting and immunohistochemistry. CONCLUSIONS: YFSJ inhibits NSCLC by inducing cell cycle arrest in the G1/S phase to suppress tumor growth, cell viability, and cell migration through synergistic effects with Gef via the tyrosine metabolic pathway and the EGFR/MET signaling pathway. To summarize, the findings of the current study indicate that YFSJ is a prospective complementary treatment for Gef-resistant NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Rats , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Gefitinib/pharmacology , Gefitinib/therapeutic use , Lung Neoplasms/pathology , Molecular Docking Simulation , Chromatography, Liquid , Prospective Studies , ErbB Receptors/metabolism , Drug Resistance, Neoplasm , Tandem Mass Spectrometry , Signal Transduction , Cell Cycle , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Cell Proliferation
2.
Phytomedicine ; 115: 154843, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37149966

ABSTRACT

BACKGROUND: Chinese herbal formulae has multiple active constituents and targets, and the good clinical response is encouraging more scientists to explore the bio-active ingredients in such complex systems. Yi-Fei-San-Jie formula (YFSJF) is commonly used to treat patients with lung cancer in South China; however, its bio-active ingredients remain unknown. PURPOSE: We investigated the bio-active ingredients of the YFSJF using a novel comprehensive strategy. METHODS: A549 cell extraction coupled with ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS) was used for the screening of potential bio-active ingredients. Network pharmacology approach and molecular dynamics simulation were performed for the screening of targets. Surface plasmon resonance (SPR) assay and molecular biology techniques were used to verify the targets. RESULTS: Nine A549 cell membrane-binding compounds were identified through cell extraction/UPLC-MS/MS. Five compounds, namely ginsenoside Ro, ginsenoside Rb1, ginsenoside Rc, peimisine, and peimine were cytotoxic to A549 cells, and they were considered the bio-active ingredients of the YFSJF in vitro. Network pharmacology analysis revealed that TGFBR2 is the key target and the TGFß pathway is the key pathway targeted by YFSJF in non-small cell lung cancer. Peimisine showed an affinity to TGFBR2 using molecular docking and dynamic stimulation, which was confirmed using surface plasmon resonance spectroscopy. The molecular biology-based analysis further confirmed that peimisine targets TGFBR2 and can reverse A549 epithelial-mesenchymal transition by inhibiting the TGFß pathway. CONCLUSION: Taken together, cell extraction/UPLC-MS/MS, network pharmacology, and molecular biology-based analysis comprise a feasible strategy to explore active ingredients in YFSJF.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Receptor, Transforming Growth Factor-beta Type II , Chromatography, High Pressure Liquid , Chromatography, Liquid , Lung Neoplasms/drug therapy , Molecular Docking Simulation , Network Pharmacology , Tandem Mass Spectrometry , Drugs, Chinese Herbal/pharmacology
3.
Biomed Res Int ; 2021: 8875503, 2021.
Article in English | MEDLINE | ID: mdl-33628824

ABSTRACT

In order to explore the specific mechanism of YiqiChutan formula (YQCTF) in inhibiting the angiogenesis of lung cancer and its relationship with delta-like ligand 4- (DLL4-) Notch signaling, 30 healthy BALB/c-nu/nu rats were selected and divided into three groups: A549 group (implanted with lung adenocarcinoma cell line A549), NCI-H460 group (implanted with human lung large-cell carcinoma cell line NCI-H460), and NCI-H446 group (implanted with human lung small cell carcinoma cell line NCI-H446) for constructing lung cancer transplanted tumor models. After modeling, the group treated with normal saline was taken as control group, 200 mg/kg of YQCTF was adopted for intervention, and the tumor volume and growth inhibition rate were compared with the vascular targeted inhibitor Sorafenib. HE staining, CD31 fluorescent antibody staining, and microelectron microscopy were adopted to observe the neovascular endothelial cells of the transplanted tumor. The expression of VEGF, HIF-1α, DLL4, and Notch-1 in the transplanted tumors in each group was detected by Western blot and RT-PCR at the protein level or mRNA level. Compared with the control group, the YQCTF-treated group had obvious inhibitory effect on lung cancer transplanted tumor and lung cancer angiogenesis. In the YQCTF-treated group, the density of angiogenesis decreased significantly and the vascular lumen structure also decreased, and the expression levels of VEGF, HIF-1α, DLL4, and Notch-1 in the YQCTF-treated group were all lower than those in the control group. YQCTF could inhibit the growth of lung cancer transplanted tumor through antiangiogenesis, and it could also reduce the amount of angiogenesis in lung cancer transplanted tumor. In addition, the generation of lumen structure was also hindered, which was realized through the VEGF signaling pathway and DLL4-Notch signaling pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma of Lung , Calcium-Binding Proteins/metabolism , Drugs, Chinese Herbal/pharmacology , Lung Neoplasms , Neoplasm Proteins/metabolism , Neovascularization, Pathologic , Receptors, Notch/metabolism , Signal Transduction/drug effects , A549 Cells , Adenocarcinoma of Lung/blood supply , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Animals , Humans , Lung Neoplasms/blood supply , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Rats , Rats, Nude , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL