Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Curr Neuropharmacol ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38073105

ABSTRACT

BACKGROUND: Meniere's disease (MD) is a cochlear neurodegenerative disease. Hearing loss appears to be triggered by oxidative stress in the ganglion neurons of the inner ear. OBJECTIVE: Here, we confirm the variation of markers of oxidative stress and inflammation in patients with Meniere and hypothesize that chronic treatment with Coriolus mushroom helps in the response to oxidative stress and acts on α-synuclein and on NF-kB-mediated inflammatory processes. METHODS: Markers of oxidative stress and inflammation were evaluated in MD patients with or without Coriolus treatment for 3 or 6 months. RESULTS: MD patients had a small increase in Nrf2, HO-1, γ-GC, Hsp70, Trx and sirtuin-1, which were further increased by Coriolus treatment, especially after 6 months. Increased markers of oxidative damage, such as protein carbonyls, HNE, and ultraweak chemiluminescence, associated with a decrease in plasma GSH/GSSG ratio, were also observed in lymphocytes from MD patients. These parameters were restored to values similar to the baseline in patients treated with Coriolus for both 3 and 6 months. Furthermore, treated MD subjects showed decreased expression of α-synuclein, GFAP and Iba-1 proteins and modulation of the NF-kB pathway, which were impaired in MD patients. These changes were greatest in subjects taking the supplements for 6 months. CONCLUSIONS: Our study suggests MD as a model of cochlear neurodegenerative disease for the identification of potent inducers of the Nrf2-vitagene pathway, able to reduce the deleterious consequences associated with neurodegenerative damage, probably by indirectly acting on α-synuclein expression and on inflammatory processes NF- kB-mediated.

2.
Medicina (Kaunas) ; 59(11)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38004094

ABSTRACT

There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.


Subject(s)
Deafness , Neurobiology , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , Cochlea , Aging/physiology
3.
Curr Neuropharmacol ; 2023 08 17.
Article in English | MEDLINE | ID: mdl-37592816

ABSTRACT

Autism spectrum disorder (ASD) includes a heterogeneous group of complex neurodevel opmental disorders characterized by atypical behaviors with two core pathological manifestations: deficits in social interaction/communication and repetitive behaviors, which are associated with disturbed redox homeostasis. Modulation of cellular resilience mechanisms induced by low levels of stressors represents a novel approach for the development of therapeutic strategies, and in this context, neuroprotective effects of a wide range of polyphenol compounds have been demonstrated in several in vitro and in vivo studies and thoroughly reviewed by [2, 3]. Mushrooms have been used in traditional medicine for many years and have been associated with a long list of therapeutic properties, including antitumor, immunomodulatory, antioxidant, antiviral, antibacterial, and hepatoprotective effects [4]. Our recent studies have strikingly indicated the presence of polyphenols in nutritional mushrooms and demonstrated their protective effects in different models of neurodegenerative disorders in humans and rats [5, 6]. Although their therapeutic effects are exerted through multiple mechanisms, increasing attention is focusing on their capacity to induce endogenous defense systems by modulating cellular signaling processes, such as nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways. Here we discuss the protective role of hormesis and its modulation by hormetic nutrients in ASD.

4.
Int J Oncol ; 57(5): 1129-1144, 2020 11.
Article in English | MEDLINE | ID: mdl-33491752

ABSTRACT

Walnut (Juglans regia L.) is considered to be a 'superfood' for its multiple protective actions on human health. Walnut extracts have proven antitumor activity in different cancer cell lines. However, the efficacy of septum extract against glioblastoma has still not been investigated. Glioblastoma is the most difficult type of brain cancer to treat. The standard therapy, based on temozolomide, causes several side effects, including neutropenia and lymphocytopenia, which often favor the onset of opportunistic infections. In the present study, the chemical profile of the Sicilian walnut septum ethanolic extract was analyzed using high­performance liquid chromatography (HPLC)­diode array detection and HPLC­electrospray ionization tandem mass spectrometry. The potential cytostatic activity of the extract against the human A172 glioblastoma cell line was investigated and the results showed that the extract could decrease cancer cell proliferation and migration. Using cytofluorimetric analyses and caspase­3 assays, the pro­apoptotic action of walnut extract was demonstrated. Furthermore, the evaluation of the antibacterial activity highlighted the efficacy of the extract in reducing Gram­positive and Gram­negative bacterial growth, most of which were resistant to the antibiotic, ciprofloxacin. Finally, Prediction of Activity Spectra for Substances analysis showed the predicted antitumor and antibacterial activity of HPLC detected compounds. The promising results could provide novel perspective in the field of chemotherapeutic co­adjuvants.


Subject(s)
Bacteria/drug effects , Glioblastoma/drug therapy , Juglans , Plant Extracts/pharmacology , Apoptosis/drug effects , Bacteria/growth & development , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Glioblastoma/pathology , Humans , Juglans/chemistry , Polyphenols/analysis
5.
Cancers (Basel) ; 11(9)2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31500197

ABSTRACT

Angiogenin (ANG), an endogenous protein that plays a key role in cell growth and survival, has been scrutinised here as promising nanomedicine tool for the modulation of pro-/anti-angiogenic processes in brain cancer therapy. Specifically, peptide fragments from the putative cell membrane binding domain (residues 60-68) of the protein were used in this study to obtain peptide-functionalised spherical gold nanoparticles (AuNPs) of about 10 nm and 30 nm in optical and hydrodynamic size, respectively. Different hybrid biointerfaces were fabricated by peptide physical adsorption (Ang60-68) or chemisorption (the cysteine analogous Ang60-68Cys) at the metal nanoparticle surface, and cellular assays were performed in the comparison with ANG-functionalised AuNPs. Cellular treatments were performed both in basal and in copper-supplemented cell culture medium, to scrutinise the synergic effect of the metal, which is another known angiogenic factor. Two brain cell lines were investigated in parallel, namely tumour glioblastoma (A172) and neuron-like differentiated neuroblastoma (d-SH-SY5Y). Results on cell viability/proliferation, cytoskeleton actin, angiogenin translocation and vascular endothelial growth factor (VEGF) release pointed to the promising potentialities of the developed systems as anti-angiogenic tunable nanoplaftforms in cancer cells treatment.

6.
Cornea ; 37(8): 1058-1063, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29634672

ABSTRACT

PURPOSE: The aim of this study was to investigate the properties of lactobionic acid (LA) as a possible supplement in artificial tears in in vitro and in vivo experimental model systems. LA is a bionic derivative of a polyhydroxy acid, which consists of one galactose attached by an ether link to a gluconic acid. It is a molecule endowed with several properties that make it an ideal supplement in artificial tears: it is highly hygroscopic and a powerful antioxidant, it is an iron chelator and inhibits matrix metalloprotease activity; it favors wound healing (WH); and it inhibits bacterial growth. METHODS: Promotion of WH by LA, alone or in combination with hyaluronic acid (HA), was investigated in vitro on monolayers of rabbit corneal cells (Statens Seruminstitut) and in vivo after epithelium debridement of rabbit corneas. TGF-ß expression and MMP-9 activity in wounded corneas were detected in tears and cornea extracts by western blot or by Enzyme Linked ImmunoSorbent Assay (ELISA). Bacterial growth inhibition by LA was checked on Staphylococcus aureus isolates in liquid culture. RESULTS: LA, with or without HA, favors WH in vitro and in vivo. The WH assay on the rabbit cornea showed that 4% LA in association with 0.15% HA also resulted in a blunted increase of MMP-9 and TGF-ß in tears and corneal tissue. Finally, the presence of 4% LA resulted in slower growth of cultured bacterial isolates. CONCLUSIONS: Our findings support the hypothesis that LA could be a useful supplement to artificial tears to treat ocular surface dysfunction such as dry eye.


Subject(s)
Cornea/metabolism , Corneal Diseases/drug therapy , Disaccharides/pharmacology , Wound Healing/physiology , Animals , Cell Count , Cell Line , Cornea/pathology , Corneal Diseases/pathology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Rabbits , Wound Healing/drug effects
7.
Int J Mol Med ; 40(4): 1277-1284, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28849034

ABSTRACT

The mechanisms underlying cutaneous melanogenesis have been widely studied; however, very little is known about uveal melanogenesis. Melanin is normally produced by uveal melanocytes and gives the color to the iris. A derangement from this normal production may occur, for instance, by iatrogenic events, such as glaucoma therapy with prostaglandins that may enhance cutaneous and iris pigmentation. In this study, we investigated the mechanisms that regulate uveal melanogenesis in human uveal melanoma cells (92.1) and murine cutaneous melanoma cells (B16-F1). In the first part of the study, we compared the effects of known cutaneous pigmenting agents on the B16-F1 and 92.1 cells, showing an opposite response of the two cell lines. Subsequently, using argan oil, a known depigmenting agent for murine cutaneous melanoma cells, on 92.1 cells, we found that in these cells, it also functioned as an inhibitor of melanogenesis and tyrosinase expression. From a molecular perspective, treatment of the 92.1 cells with argan oil decreased melanogenesis-associated transcription factor (MITF) gene expression by inducing MITF phosphorylation at Ser73, thus leading to MITF ubiquitination and disposal. It also led to the downregulation of the extracellular signal-regulated kinase (ERK)1/2 and Akt pathways, also known to be involved in cutaneous melanogenesis, although with an opposing function. Taken together, our data indicate that: ⅰ) some differences exist in the regulation of melanogenesis between cutaneous and uveal melanoma cells; and ⅱ) argan oil exerts a depigmenting effect on 92.1 cells through its action on the ERK1/2 and Akt pathways.


Subject(s)
Melanins/antagonists & inhibitors , Melanocytes/drug effects , Monophenol Monooxygenase/antagonists & inhibitors , Plant Oils/pharmacology , Uvea/drug effects , Animals , Cell Line, Tumor , Gene Expression Regulation , Humans , Melanins/biosynthesis , Melanocytes/metabolism , Melanocytes/pathology , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mice , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Organ Specificity , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Skin/drug effects , Skin/metabolism , Skin/pathology , Ubiquitination/drug effects , Uvea/metabolism , Uvea/pathology , Uveal Neoplasms/drug therapy , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology
8.
Inflamm Res ; 66(11): 947-959, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28676917

ABSTRACT

BACKGROUND: The molecular nature of lipoic acid (LA) clarifies its capability of taking part to a variety of biochemical reactions where redox state is meaningful. The pivotal action of LA is the antioxidant activity due to its ability to scavenge and inactivate free radicals. Furthermore, LA has been shown to chelate toxic metals both directly and indirectly by its capability to enhance intracellular glutathione (GSH) levels. This last property is due to its ability to interact with GSH and recycle endogenous GSH. LA exhibits significant antioxidant activity protecting against oxidative damage in several diseases, including neurodegenerative disorders. Interestingly, LA is unique among natural antioxidants for its capability to satisfy a lot of requirements, making it a potentially highly effective therapeutic agent for many conditions related with oxidative damage. In particular, there are evidences showing that LA has therapeutic activity in lowering glucose levels in diabetic conditions. Similarly, LA supplementation has multiple beneficial effects on the regression of the mitochondrial function and on oxidative stress associated with several diseases and aging. AIM: The aim of the present review is to describe the molecular mechanisms underlying the beneficial effects of LA under various experimental conditions and disease and how to exploit such effect for clinical purposes. CONCLUSION: LA has pleiotropic effects in different pathways related with several diseases, its use as a potential therapeutic agent is very promising.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Thioctic Acid , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Humans , Signal Transduction , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use
9.
Nutrients ; 8(10)2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27706074

ABSTRACT

Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of clonal plasma cells (PC) in the bone marrow (BM) leading to bone destruction and BM failure. Despite recent advances in pharmacological therapy, MM remains a largely incurable pathology. Therefore, novel effective and less toxic agents are urgently necessary. In the last few years, pomegranate has been studied for its potential therapeutic properties including treatment and prevention of cancer. Pomegranate juice (PGJ) contains a number of potential active compounds including organic acids, vitamins, sugars, and phenolic components that are all responsible of the pro-apoptotic effects observed in tumor cell line. The aim of present investigation is to assess the antiproliferative and antiangiogenic potential of the PGJ in human multiple myeloma cell lines. Our data demonstrate the anti-proliferative potential of PGJ in MM cells; its ability to induce G0/G1 cell cycle block and its anti-angiogenic effects. Interestingly, sequential combination of bortezomib/PGJ improved the cytotoxic effect of the proteosome inhibitor. We investigated the effect of PGJ on angiogenesis and cell migration/invasion. Interestingly, we observed an inhibitory effect on the tube formation, microvessel outgrowth aorting ring and decreased cell migration and invasion as showed by wound-healing and transwell assays, respectively. Analysis of angiogenic genes expression in endothelial cells confirmed the anti-angiogenic properties of pomegranate. Therefore, PGJ administration could represent a good tool in order to identify novel therapeutic strategies for MM treatment, exploiting its anti-proliferative and anti-angiogenic effects. Finally, the present research supports the evidence that PGJ could play a key role of a future therapeutic approach for treatment of MM in order to optimize the pharmacological effect of bortezomib, especially as adjuvant after treatment.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Beverages , Cell Proliferation/drug effects , Fruit/chemistry , Lythraceae , Multiple Myeloma/drug therapy , Antineoplastic Agents, Phytogenic , Antioxidants/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Flavonoids , Humans , Multiple Myeloma/blood supply , Multiple Myeloma/pathology , Neoplasm Invasiveness/prevention & control , Phytotherapy , Tannins , Vascular Endothelial Growth Factor A/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL