Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Med Chem ; 64(16): 12261-12272, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34382796

ABSTRACT

Modern adjuvants for vaccine formulations are immunostimulating agents whose action is based on the activation of pattern recognition receptors (PRRs) by well-defined ligands to boost innate and adaptive immune responses. Monophosphoryl lipid A (MPLA), a detoxified analogue of lipid A, is a clinically approved adjuvant that stimulates toll-like receptor 4 (TLR4). The synthesis of MPLA poses manufacturing and quality assessment challenges. Bridging this gap, we report here the development and preclinical testing of chemically simplified TLR4 agonists that could sustainably be produced in high purity and on a large scale. Underpinned by computational and biological experiments, we show that synthetic monosaccharide-based molecules (FP compounds) bind to the TLR4/MD-2 dimer with submicromolar affinities stabilizing the active receptor conformation. This results in the activation of MyD88- and TRIF-dependent TLR4 signaling and the NLRP3 inflammasome. FP compounds lack in vivo toxicity and exhibit adjuvant activity by stimulating antibody responses with a potency comparable to MPLA.


Subject(s)
Adjuvants, Immunologic/pharmacology , Glucosamine/pharmacology , Glycolipids/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors , Adaptor Proteins, Vesicular Transport/metabolism , Adjuvants, Immunologic/chemical synthesis , Adjuvants, Immunologic/metabolism , Adjuvants, Immunologic/toxicity , Animals , Female , Glucosamine/chemical synthesis , Glucosamine/metabolism , Glucosamine/toxicity , Glycolipids/chemical synthesis , Glycolipids/metabolism , Glycolipids/toxicity , Humans , Inflammasomes/metabolism , Interleukin-1/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
2.
J Nat Prod ; 81(10): 2212-2221, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30360625

ABSTRACT

Fifteen new multifunctional conjugates were designed and synthesized by chemically linking the steroidal framework of natural occurring γ-oryzanol and γ-oryzanol-derived phytosterols to a wide range of bioactive natural compounds (fatty acids, phenolic acids, amino acids, lipoic acid, retinoic acid, curcumin, and resveratrol). Starting from γ-oryzanol, which is the main component of rice bran oil, this study was aimed at assessing if the conjugation strategy might enhance some γ-oryzanol bioactivities. The antioxidant activity was evaluated through three different mechanisms, namely, DPPH-scavenging activity, metal-chelating activity, and ß-carotene-bleaching inhibition. Measurement of the in vitro cell growth inhibitory effects on three different human cancer cellular lines was also carried out, and the potential hypocholesterolemic effect was studied. Compounds 10 and 15 displayed an improved antioxidant activity, with respect to that of γ-oryzanol. Compounds 2, 6, and 12 exerted an antiproliferative activity in the low micromolar range against HeLa and DAOY cells (GI50 < 10 µM). As for the claimed hypocholesterolemic effect of γ-oryzanol, none of the synthesized compounds inhibited the 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis.


Subject(s)
Anticholesteremic Agents/chemical synthesis , Anticholesteremic Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/chemical synthesis , Antioxidants/pharmacology , Phenylpropionates/chemistry , Phenylpropionates/pharmacology , Phytosterols/chemistry , Phytosterols/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Chelating Agents/chemistry , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/pharmacology , Humans , Molecular Structure , Oryza/chemistry , Plant Oils/chemistry , beta Carotene/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL