Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Mediators Inflamm ; 2020: 4620251, 2020.
Article in English | MEDLINE | ID: mdl-32410853

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the anti-inflammatory effects of the crude extract (CE), derived fraction, and isolated compounds from Calea pinnatifida leaves in a mouse model of pulmonary neutrophilia. METHODS: The CE and derived fractions, hexane, ethyl acetate, and methanol, were obtained from C. pinnatifida leaves. The compounds 3,5- and 4,5-di-O-E-caffeoylquinic acids were isolated from the EtOAc fraction using chromatography and were identified using infrared spectroscopic data and nuclear magnetic resonance (1H and 13C NMR). Leukocytes count, protein concentration of the exudate, myeloperoxidase (MPO) and adenosine deaminase (ADA), and nitrate/nitrite (NO x ), tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1ß), and interleukin-17A (IL-17A) levels were determined in the pleural fluid leakage after 4 h of pleurisy induction. We also analyzed the effects of isolated compounds on the phosphorylation of both p65 and p38 in the lung tissue. RESULTS: The CE, its fractions, and isolated compounds inhibited leukocyte activation, protein concentration of the exudate, and MPO, ADA, NO x , TNF-α, IL-1ß, and IL-17A levels. 3,5- and 4,5-di-O-E-caffeoylquinic acids also inhibited phosphorylation of both p65 and p38 (P < 0.05). CONCLUSION: This study demonstrated that C. pinnatifida presents important anti-inflammatory properties by inhibiting activated leukocytes and protein concentration of the exudate. These effects were related to the inhibition of proinflammatory mediators. The dicaffeoylquinic acids may be partially responsible for these anti-inflammatory properties through the inhibition of nuclear transcription factor kappa B and mitogen-activated protein kinase pathways.


Subject(s)
Asteraceae/chemistry , Inflammation/drug therapy , Leukocyte Disorders/drug therapy , Lung Diseases/drug therapy , Neutrophils/drug effects , Plant Extracts/pharmacology , Adenosine Deaminase/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Carrageenan , Disease Models, Animal , Female , Inflammation/chemically induced , Interleukin-17/metabolism , Interleukin-1beta/metabolism , Leukocyte Disorders/chemically induced , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung Diseases/chemically induced , Mice , Nitrates/chemistry , Nitrites/chemistry , Peroxidase/metabolism , Phosphorylation , Pleurisy/drug therapy , Quinic Acid/analogs & derivatives , Quinic Acid/chemistry , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
2.
J Ethnopharmacol ; 194: 337-347, 2016 Dec 24.
Article in English | MEDLINE | ID: mdl-27596330

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ageratum conyzoides Linn (Asteraceae), a tropical plant that is very common in West Africa and some parts of Asia and South America, has been used to treat inflammatory disorders. In Brazil, teas made from A. conyzoides L. are used as anti-inflammatory, analgesic and anti-diarrheic agents. Therefore, it is necessary to study the mechanism of anti-inflammatory action of A. conyzoides L. to support its medicinal use for treating inflammatory conditions. These studies will also support the development of effective pharmacological agents with potent anti-inflammatory properties. AIM OF THE STUDY: To evaluate the anti-inflammatory effects of the crude extract (CE), its derived fractions: ethanol (EtOH-F), hexane (HEX-F), ethyl acetate (EtOAc-F) and dichloromethane (DCM-F) and isolated compounds, such as 5'-methoxy nobiletin (MeONOB), 1,2-benzopyrone and eupalestin, which are obtained from the aerial parts of A. conyzoides L. MATERIALS AND METHODS: These evaluations were performed using an animal model of inflammation induced by carrageenan. The following inflammatory parameters were analysed: leukocyte influx, protein concentration of the exudate, myeloperoxidase (MPO), adenosine deaminase (ADA) and nitric oxide metabolites (NOx) concentrations, interleukin 10 (IL-10), interleukin 17A (IL-17A), interleukin 6 (IL-6), tumor necrosis factor (TNF), interferon gamma (IFN-γ) and phosphorylation of p65 subunit of NF-κB (p-p65 NF-κB), p38 mitogen-activated protein kinases (p-p38 MAPK) were also analysed. RESULTS: CE, its EtOH-F, HEX-F, EtOAc-F and DCM-F and the isolated compounds, including MeONOB, 1,2-benzopyrone and eupalestin, significantly reduced leukocyte influx, protein concentration of the exudate, MPO, ADA, and NOx concentrations (p<0.05). CE, EtOH-F and isolated compounds significantly reduced IL-17A, IL-6, TNF and IFN-γ levels (p<0.05). CE, EtOH-F and isolated compound 1,2-benzopyrone also increased IL-10 levels (p<0.05). Isolated compounds, MeONOB, 1,2-benzopyrone and eupalestin, reduced p-p65 NF-κB and p-p38 MAPK (p<0.01). CONCLUSIONS: This study demonstrates that A. conyzoides L. exerts its important anti-inflammatory properties by inhibiting leukocyte influx and protein concentration of the exudate, as well as reducing the levels of several pro-inflammatory mediators. The anti-inflammatory action of A. conyzoides L. may be because of the inhibition of p65 NF-κB and MAPK activation by the isolated compounds.


Subject(s)
Ageratum/chemistry , Anti-Inflammatory Agents/pharmacology , Carrageenan/toxicity , Inflammation/prevention & control , Plant Extracts/pharmacology , Pleural Cavity/drug effects , Animals , Chromatography, Liquid , Inflammation/chemically induced , Male , Mice , Spectrometry, Mass, Electrospray Ionization
3.
Int Immunopharmacol ; 36: 165-172, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27155392

ABSTRACT

Ilex paraguariensis is a native plant from Southern America, where it is used as a beverage. In traditional medicine, it is used to treat many diseases including inflammation. However, we do not yet know precisely how this effect occurs. We therefore evaluated its anti-inflammatory effect in a murine model of pleurisy. The standardized CE, BF and ARF fractions, Caf, Rut and CGA were able to reduce leukocyte migration, exudate concentration, MPO and ADA activities and NOx levels. Moreover, I. paraguariensis also inhibited the release of Th1/Th17 pro-inflammatory cytokines, while increasing IL-10 production and improving the histological architecture of inflamed lungs. In addition, its major compounds decreased p65 NF-κB phosphorylation. Based on our results, we can conclude that I. paraguariensis exerts its anti-inflammatory action by attenuating the Th1/Th17 polarization in this model. This fact suggests that the use of this plant as a beverage can protect against Th1/Th17 inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Ilex paraguariensis/immunology , Leukocytes/drug effects , Medicine, Traditional , Plant Extracts/therapeutic use , Pleurisy/drug therapy , Animals , Caffeine/chemistry , Caffeine/therapeutic use , Cell Movement/drug effects , Chlorogenic Acid/chemistry , Chlorogenic Acid/therapeutic use , Disease Models, Animal , Female , Humans , Interleukin-10/metabolism , Leukocytes/physiology , Mice , NF-kappa B/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Rutin/chemistry , Rutin/therapeutic use , South America , Th1 Cells/immunology , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL