Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Free Radic Res ; 49(11): 1296-307, 2015.
Article in English | MEDLINE | ID: mdl-26118717

ABSTRACT

Oxidative stress and neuroinflammation are early events associated with dopaminergic neuronal degeneration in Parkinson's disease (PD). Previous studies indicated that electroacupuncture (EA) stimulation is effective in protecting dopaminergic neurons from degeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In this study, we further characterized the effect of EA on MPTP-induced oxidative responses in the mouse dopamine system. We found that subacute administration of MPTP enhanced lipid and protein oxidation and reduced expression of endogenous antioxidant enzymes (such as superoxide dismutase and catalase) in the striatum. MPTP also reduced expression of an antioxidant transcription factor, nuclear factor-E2-related factor-2 (Nrf2), and Nrf2-regulated antioxidant enzymes (nicotinamide adenine dinucleotide phosphate quinone oxidoreductase-1 and heme oxygenase-1) in the striatum and/or midbrain. Using human placental alkaline phosphatase (hPAP) as a reporter of Nrf2-regulated gene expression in hPAP transgenic mice, we found that MPTP suppressed hPAP expression in the striatum and midbrain. Application of EA at an effective frequency (100 Hz) was sufficient to reverse these changes induced by MPTP. In addition, EA reduced microglia activation and astrogliosis in the striatum and midbrain, increased tyrosine hydroxylase levels in the striatum, and improved vertical movement in MPTP mice. These results provide further evidence supporting that EA produces a series of anti-oxidative effects that effectively counteract with the oxidative stress in the nigrostriatal dopamine system induced by MPTP in a mouse model of PD.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/immunology , Electroacupuncture/methods , NF-E2-Related Factor 2/metabolism , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Parkinson Disease/metabolism , Signal Transduction
2.
J Neuroinflammation ; 12: 103, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26016857

ABSTRACT

BACKGROUND: The acupuncture or electroacupuncture (EA) shows the therapeutic effect on various neurodegenerative diseases. This effect was thought to be partially achieved by its ability to alleviate existing neuroinflammation and glial dysfunction. In this study, we systematically investigated the effect of EA on abnormal neurochemical changes and motor symptoms in a mouse neurodegenerative disease model. METHODS: The transgenic mouse which expresses a mutant α-synuclein (α-syn) protein, A53T α-syn, in brain astrocytic cells was used. These mice exhibit extensive neuroinflammatory and motor phenotypes of neurodegenerative disorders. In this study, the effects of EA on these phenotypic changes were examined in these mice. RESULTS: EA improved the movement detected in multiple motor tests in A53T mutant mice. At the cellular level, EA significantly reduced the activation of microglia and prevented the loss of dopaminergic neurons in the midbrain and motor neurons in the spinal cord. At the molecular level, EA suppressed the abnormal elevation of proinflammatory factors (tumor necrosis factor-α and interleukin-1ß) in the striatum and midbrain of A53T mice. In contrast, EA increased striatal and midbrain expression of a transcription factor, nuclear factor E2-related factor 2, and its downstream antioxidants (heme oxygenase-1 and glutamate-cysteine ligase modifier subunits). CONCLUSIONS: These results suggest that EA possesses the ability to ameliorate mutant α-syn-induced motor abnormalities. This ability may be due to that EA enhances both anti-inflammatory and antioxidant activities and suppresses aberrant glial activation in the diseased sites of brains.


Subject(s)
Astrocytes/metabolism , Electroacupuncture/methods , Mutation/genetics , Neurodegenerative Diseases , alpha-Synuclein/genetics , Animals , Calcium-Binding Proteins/metabolism , Exploratory Behavior/physiology , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Microfilament Proteins/metabolism , Motor Activity/drug effects , Motor Activity/genetics , Motor Neurons/drug effects , Motor Neurons/metabolism , Motor Neurons/pathology , Muscle Strength/genetics , Muscle Strength/physiology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL