Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Sci Total Environ ; 827: 154372, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35259387

ABSTRACT

Se-enrichment characteristics in water-soil-plant system and dietary Se status of local residents in seleniferous areas were investigated. Results showed that Se in well water might mainly derived from Se-enriched shales and coals, and Se mobility in seleniferous soils was relatively low with less than 6.7% bioavailable forms in high-Se areas. Soil Se with irrigation, precipitation and fertilization sources contributed more to soil Se than Se-enriched shales and coals in low-Se areas, resulting in slightly higher mobility of Se in low-Se soils. Se concentration in edible parts of main crops ranged from 0.005 mg kg-1 to 4.17 mg kg-1, and cereal plants had a higher Se-enrichment ability than tuber plants. The probable dietary Se intake (PDI) in high-Se areas was decreased to 959.3 µg d-1 in recent years, which might be attributed to tap water as drinking water in recent year rather than well water-dependent and changes in dietary structure, but still far above the permissible value of 400 µg d-1. Reducing cereal-derived dietary Se intake is an important strategy to better Se nutrition status in high-Se areas. After synthesis considerations on soil Se bioavailability and PDI of Se, the soil total Se of 4 mg kg-1 and the soil available Se content of 0.32 mg kg-1 were proposed to be the reference threshold values of soil Se excess in high-Se areas in Enshi, respectively.


Subject(s)
Selenium , Soil Pollutants , China , Coal , Crops, Agricultural , Selenium/analysis , Soil/chemistry , Soil Pollutants/analysis , Water
SELECTION OF CITATIONS
SEARCH DETAIL